Johnson’s
 TABLES

'REESE LIBRARY

OF THE:

UNIVERSITY Y OF CALIFORNIA. Received Hoarch 1900 Accession No. $7865^{-\pi} \%$. Class No.

Johnson's Tables.

STADIA AND EARTH-WORK TABLES.

Four-place Logarithms, Logarithmic Traverse
Table, Natural Functions, Map
Projections, etc., etc.
THEORY AND $\stackrel{\text { Reprinted from }}{\text { PRACTICE }}$ OF SURUEYING.

BY
J. B. JOHNSON, professor of civil enginerring, washington university, st. louis

イA7~し S6

COPYRIGHT, 1892,

BY
J. B. JOHNSON.

$$
78.657
$$

NOTE BY THE AUTHOR.

THE great use made by engineers of three of the following tables, viz., the Four-place Logarithmic Table, the Stadia Table, and the table giving Prismoidal Volumes, has necessitated the binding of these in more convenient form than that in which they first appeared in the Theory and Practice of Surveying. Since the cost is not materially increased by additional pages, the remaining tables are also included, as well as the entire chapter on the Measurement of Volumes.

The Stadia Tables were computed by Mr. Arthur Winslow, State Geologist of Missouri, and first published by the Pennsylvania Geological Survey. The four-place logarithm tables were originally taken from Lee's Tables and Formulæ, a publication of the U. S. Engineer Corps. The table giving Volumes by the Prismoidal Formula was computed by the Author, It is the only table, he believes, giving volumes by the prismoidal formula at one operation. It may also be used for Mean End-areas. Tables IV and VIII are also original in their arrangement.
J. B. J.

EXPLANATION OF TABLES.

Tables I, II, III, VI, and VII require no explanation.
Table IV gives logarithmic sines and cosines to four places for computing latitudes and departures when the angles are read from zero to 360 degrees. It can of course be used for bearings reading from zero to 90 degrees, as is ordinarily done in compass work. In stadia work, and always in transit work where the instrument is graduated continuously to 360 degrees, this table will be found very convenient for coördinating traverse lines, as well as for computing latitudes and departures for closed surveys.

From zero to 5 degrees, and from 85 to 90 degrees, the tables give values for each minute of arc without tabular differences. From 5 to 45 degrees values are given for each io minutes of arc with tabular differences for the log. sines, and from 45 to 85 degrees with tabular differences for the io-minute increments for the log. cosines. In the other cases the tabular difference is so small as to be readily taken at sight. Table $\mathrm{III}_{\mathrm{A}}$ can of course be used in place of Table IV if preferred.

Table V gives horizontal distance and difference of elevation for inclined sights in stadia work. The true equations of reduction are:

$$
\text { Hor. Dist. }=r \cos ^{2} v+(c+f) \cos v, ~ . ~ . ~ . ~(1) ~
$$

and

$$
\begin{equation*}
\text { Dif. Elev. }=r \cos v \sin v+(c+f) \sin v ; . \tag{2}
\end{equation*}
$$

where
$r=$ reading of distance on stadia rod when held vertically;
$v=$ vertical angle with the horizon;
$f=$ focal length of objective ;
$c=$ distance from objective to centre of instrument.
The tables give the values for the first term only of the second member. The values for the second term are given at the bottom of the page, the constant term $(c+f)$ in the above equations being there called " c." The sum of these two distances, viz., distance from centre of instrument to objective plus distance from cross-wires to objective, varies in different instruments from nine to fifteen inches. Three values of this second term are given, therefore, one corresponding to $c+f=$ 0.75 foot, one to $c+f=1.00$ foot, and one to $c+f=1.25$ foot. In ordinary work these corrections may be neglected. See chapter on Stadia Surveying in the Theory and Practice of Surveying.

A Reduction Diagram, printed from an engraved plate 20 by 24 inches, has been prepared with great care, giving corrections to the horizontal distance read, and the differences of elevation, for inclined sights, as shown by the table, not including the $(c+f)$ term. For all angles below 6° and distances less than 1500 feet, with differences of elevation less than 50 feet, this diagram is much preferable to the table. The results are found at one operation, to the nearest tenth of a foot, with great rapidity. It can be procured from the publisher of these tables, printed on heavy lithographic paper, price 50 cents, post paid.

Table VIII gives the coördinates to be used in the polyconic projection of maps. It is fully explained in the chapter on Projection of Maps in the Surveying.

Tables IX and X will be found very useful in sewer and hydraulic work where Kutter's formula is to be used. They
are fully explained in the chapter on Hydrographic Surveying.

Table XI gives correct volumes of prismoids, by the prismoidal formula.

For the benefit of railroad engineers and others who either do not possess a copy of the Surveying, or who do not have it by them, the entire chapter on the Measurement of Volumes is here inserted. At least seven pages of this chapter is requisite to a full explanation of the table, and for the sake of completeness, and to show the superiority of this table over any table of volumes from mean end-areas, or by the use of diagonals, it has been thought best to insert the entire chapter.

Table XII gives the azimuth of Polaris at any hour-angle. By its use an observation for azimuth to the nearest minute of arc can be made at any hour when the star is visible, provided the local time is known to within one or two minutes. When the observation is taken two hours from the time of elongation, the local time need not be known nearer than five minutes. A detailed explanation of its use is given in the Surveying, Art. $38 \mathrm{I}_{\mathrm{A}}$.

CONTENTS.

PAGE
Explanation of Tables iv
The Measurement of Volumes.
310. Proposition 1
3II. Grading over Extended Surfaces 3
312. Approximate Estimates by means of Contours 6
313. The Prismoid II
314. The Prismoidal Formula II
3I5. Areas of Cross-sections 13
316. The Centre and Side Heights 14
317. The Area of a Three-level Section 14
318. Cross-sectioning 15
319. Three-level Sections, the Upper Surface consisting of two Warped Surfaces 17
320. Construction of Tables for Prismoidal Computation. 19
321. Three-level Sections, the Upper Surface divided into Four Planes by Diagonals 24
322. Comparison of Volumes by Diagonals and by Warped Surfaces. 26
323. Preliminary Estimates from the Profiles 28
324. Borrow Pits 31
325. Shrinkage of Earthwork 31
326. Excavations under Water. 32
TABLES.
I. Trigonometrical Formule. 37
II. For Converting Meters, Feet, and Chains 41
III. Logarithms of Numbers to Four Places 42
IIIa. Logarithms of Trigonometrical Functions to Four Places. 44
IV. Logarithmic Traverse Table 48
V. Stadia Reductions for Horizontal Distance and for Eleva- TION. 56
VI. Natural Sines and Cosines. 64
VII. Natural Tangents and Cotangents. 73
VIII. Coördinates for Polyconic Projection 85
IX. Values of Coefficients in Kutter’s Formula 86
X. Diameters of Circular Conduits by Kutter's Formula. 87
XI. Earthwork Table-Volumes by the Prisimoidal Formula 88
XII. Azimuths of Polaris at all Hour Angles. 98

CHAPTER XIII.

THE MEASUREMENT OF VOLUMES.

310. Proposition.-The volume of any doubly-truncated prism or cylinder, bounded by plane ends, is equal to the area of a right section into the length of the element through the centres of gravity of the bases, or it is equal to the area of either base into the altitude of the element joining the centres of gravity of the bases, measured perpendicular to that base.

Let $A B C D$, Fig. Io7, be a cylinder, cut by the planes $O C$ and $O B$, the unsymmetrical right section $E F$ being shown in plan in $E^{\prime} F^{\prime}$. Whatever position the cutting planes may have, if they are not parallel they will intersect in a line. This line of intersection may be taken perpendicular to the paper, and the body would then appear as shown in the figure, the line of intersection of the cutting planes being projected at O.

$$
\begin{aligned}
\text { Let } A & =\text { area of the right section; } \\
\Delta A & =\text { any very small portion of this area; } \\
x & =\text { distance of any element from } O ; \\
\text { then } a x & =\text { height of any element at a distance } x \text { from } O .
\end{aligned}
$$

An elementary volume would then be $a x \Delta A$, and the total volume of the solid would be $\Sigma a x \Delta A$.

Again, the total volume is equal to the mean or average height of all the elementary volumes multiplied by the area of the right section.

The mean height of the elementary volumes is, therefore,
$\frac{\Sigma a x \Delta A}{A}=\frac{a \Sigma x \Delta A}{A}$. But $\frac{\Sigma x \Delta A}{A}$ is the distance from O to the centre of gravity, G, of the right section,* and a times this dis tance is the height of the element $L K$ through this point. Therefore, the mean height is the height through the centre of

Fig. 107.
gravity of the base, and this into the area of the right section is the volume of the truncated prism or cylinder. The truth of the alternative proposition can now readily be shown.

Corollary. When the cylinder or prism has a symmetrical cross-section, the centre of gravity of the base is at the centre of the figure, and the length of the line joining these centres is the mean of any number of symmetrically chosen exterior elements. For instance, if the right section of the prism be a regular polygon, the height of the centre element is the mean of the length of all the edges. This also holds true for parallelograms, and hence for rectangles. Here the centres of gravity

[^0]of the bases lie at the intersections of the diagonals; and since these bisect each other, the length of the line joining the intersections is the mean of the lengths of the four edges. The same is true of triangular cross-sections.

3II. Grading over Extended Surfaces.-Lay out the area in equal rectangles of such a size that the surfaces of the several rectangles may be considered planes. For common rolling ground these rectangles should not be over fifty feet on a side. Let Fig. io8 represent such an area. Drive pegs at

the corners, and find the elevation of the ground at each intersection by means of a level, reading to the nearest tenth of a foot, and referring the elevations to some datum-plane below the surface after it is graded. When the grading is completed, relocate the intersections from witness-points that were placed outside the limits of grading, and again find the elevations at these points. The several differences are the depths of excavation (or fill) at the corresponding corners. The contents of any partial volume is the mean of the four corner heights into the area of its cross-section. But since the rectangular areas were made equal, and since each corner height will be used as many times as there are rectangles joining at that corner, we have, in cubic yards,

$$
\begin{equation*}
V=\frac{A}{4 \times 2 \eta}\left[\Sigma h_{1}+2 \Sigma h_{2}+3 \Sigma h_{3}+4 \Sigma h_{1}\right] . \tag{1}
\end{equation*}
$$

The subscripts denote the number of adjoining rectangles the area of each of which is A.

From this equation we may frame a
Rule.-Take each corner height as many times as there are partial areas adjoining it, add them all together, and multiply by one fourth of the area of a single rectangle. Tnis gives the volume in cubic feet. To obtain it in cubic yards, divide by twenty-seven.

If the ground be laid out in rectangies, 30 feet by 36 feet, then $\frac{A}{4 \times 27}=\frac{1080}{108}=10 ;$ and if the elevations be taken to the nearest tenth of a foot, then the sum of the multiplied corner heights, with the decimal point omitted, is at once the the amount of earthwork in cubic yards. This is a common way of doing this work. In borrow-pits, for which this method is peculiarly fitted, the elementary areas would usually be smaller.

In general, on rolling ground, a plane cannot be passed through the four corner heights. We may, however, pass a plane through any three points, and so with four given points

on a surface either diagonal may be drawn, which with the bounding lines makes two surfaces. If the ground is quite irregular, or if the rectangles are taken pretty large, the surveyor may note on the ground which diagonal would most
nearly fit the surface. Let these be sketched in as shown in Fig. 109. Each rectangular area then becomes two triangles, and when computed as triangular prisms, each corner height at the end of a diagonal is used twice, while the two other corner heights are used but once. That is, twice as much weight is given to the corner heights on the diagonals as to the others. In Fig. 109, the same area as that in Fig. 108 is

Fig.ifo. shown with the diagonals drawn which best fit the surface of the ground. The numbers at the corners indicate how many times each height is to be used. It will be seen that each height is used as many times as there are triangles meeting at that corner. To derive the formula for this case, take a single rectangle, as in Fig. 110, with the diagonal joining corners 2 and 4 . Let A be the area of the rectangle. Then from the corollary, p. 395, we have for the volume of the rectangular prism, in cubic yards,

$$
\begin{align*}
V & =\frac{A}{2 \times 27}\left(\frac{h_{1}+h_{2}+h_{4}}{3}+\frac{h_{2}+h_{3}+h_{4}}{3}\right) \\
& =\frac{A}{6 \times 27}\left(h_{1}+2 h_{2}+h_{3}+2 h_{4}\right) \ldots . \tag{2}
\end{align*}
$$

For an assemblage of such rectangular prisms as shown in Fig. Iog, the diagonals being drawn, we have, in cubic yards,

$$
\begin{array}{r}
V=\frac{A}{6 \times 27}\left[\Sigma h_{1}+2 \Sigma h_{\mathrm{a}}+3 \Sigma h_{\mathrm{3}}+4 \Sigma h_{4}+5 \Sigma h_{\mathrm{b}}\right. \\
\left.+6 \Sigma h_{\mathrm{6}}+7 \Sigma h_{7}+8 \Sigma h_{\mathrm{B}}\right] ; \tag{3}
\end{array}
$$

where A is the area of one rectangle, and the subscripts denote the number of triangles meeting at a corner.

As a check on the numbering of the corners, Fig. 109, add them all together and divide by six. The result should be the number of rectangles in the figure. In this case, if the rectangles be taken 36 feet by 45 feet, or, better, 40 feet by 40.5 . feet, then the sum of the multiplied heights with the decimal point omitted is the number of cubic yards of earthwork, the corner heights having been taken out to tenths of a foot.

The method by diagonals is more accurate than that by rectangles simply, the dimensions being the same; or, for equal degrees of exactness larger rectangles may be used with diagonals than without them, and hence the work materially reduced. In any case some degree of approximation is necessary.
312. Approximate Estimates by means of Contours.(A) Whenever an extended surface of irregular outline is to be graded down, or filled up to a given plane (not a warped or curved surface), a near approximation to the amount of cut or fill may be made from the contour lines. In Fig. III the full curved lines are contours, showing the original surface of the ground. Every fifth one is numbered, and these were the contours shown on the original plat. Intermediate contours one foot apart have been interpolated for the purpose of making this estimate. The figures around the outside of the bounding lines give the elevations of those points after it is graded down. The straight lines join points of equal elevation after grading; and since this surface is to be a plane these lines are surface or contour lines after grading. Wherever these two sets of contour lines intersect, the difference of their elevations is the depth of cut or fill at that point. If now we join the points of equal cut or fill (in this case it is all in cut), we obtain a new set of curves, shown in the figure by dotted lines, which may be used for estimating the amount of earthwork. The dotted boundaries are the horizontal projections of the traces on the natural surface of planes parallel to the final
graded surface which are uniformly spaced one foot apart vertically. These projected areas are measured by the planimeter and called A_{1}, A_{2}, A_{3}, etc. Each area is bounded by the dotted line and the bounding lines of the figure, since on these

Fig. iII.
bounding lines all the projections of all the traces unite, the slope here being vertical. For any two adjoining layers we have, by the prismoidal formula* as well as by Simpson's onethird rule,

$$
\begin{equation*}
V_{x-3}=\frac{h}{3}\left(A_{1}+4 A_{2}+A_{3}\right), \tag{I}
\end{equation*}
$$

where h is the common vertical distance between the projected areas.

[^1]For the next two layers we would have, similarly,

$$
\begin{equation*}
V_{3-5}=\frac{h}{3}\left(A_{5}+4 A_{4} A_{5}\right) ; . \tag{2}
\end{equation*}
$$

or for any even number of layers we would have, in cubic yards,

$$
V=\frac{h}{3 \times 27}\left(A_{1}+4 A_{3}+2 A_{3}+4 A_{4}+2 A_{6}+\ldots A_{n}\right),(3)
$$

where n is an odd number, h and A being in feet and square feet respectively.
(B) Whenever the final surface is not to be a plane, but warped, undulating, or built to regular outlines like a fortification, a reservoir embankment, or terraced grounds, a different method should be employed.

In the former method the areas bounded by the dotted lines were areas cut out by planes parallel to the final plane surface, passed one foot apart vertically. But since the map shows only the horizontal projections of these planes, these projections, multiplied by the vertical distance between them, would give the true volumes.

When the final surface is not to be a plane, proceed as follows: First make a careful contour map of the ground. Then lay down on this map a system of contour lines, corresponding in elevation to the first set of contours, but in a different colored ink, which will accurately represent the final surface desired. This second set of contours would be a series of straight lines if a regular surface, composed of plane faces, was to be constructed, but would be curving lines if the ground were to be brought to a final curving or undulating surface.

The closed figures bounded by the two sets of intersecting contours of the same elevation are horizontal areas of cut or fill, separated by the common vertical distance between
contours. The volumes here defined are oblique solids bounded by horizontal planes at top and bottom, and are a species of prismoid. The volume of one of these prismoids is found by applying the prismoidal formula to it, finding the end areas by means of a planimeter, and taking the length as the

vertical distance between contours. If the contours be drawn close enough together, then each alternate contour-area may be used as a middle area, and the length of the prismoid taken at twice the vertical distance between contours; or the volume
may be computed by either of the formulas (12), (13), (I4), or (15) of Appendix C, where the h 's would here become the end areas and l the vertical distance between contours.

Example: Let it be required to build a square reservoir on a hillside, which shall be partly in excavation and partly in embankment, the ground being such as shown by the full contour lines in Fig. III α.*

The contours, for the sake of simplicity and brevity, are spaced five feet apart. The top of the wall, shown by the full lines making the square, is io feet wide and at an elevation of 660 feet. The reservoir is 20 feet deep, with side slopes, both inside and outside, of two to one, making the bottom elevation 640 feet, and 20 feet square, the top being iCO feet square on the inside. The dotted lines are contours of the finished slopes, both inside and out, at elevations shown on the figure. The areas in fill all fall within the broken line marked $a b c d e$ $f g h i k$, and the cut areas all fall within the broken line marked $a b c d$ ef $g o$. These broken lines are grade lines. The horizontal sectional areas in fill and cut are readily traced by following the closed figures formed by contours of equal elevation, thus-

At 640 foot level sectional area in fill is pst.
" 650 " "
" 650 "

The other areas are as easily traced. In the figure the lines have all been drawn in black. In practice they should be drawn in different colors to avoid confusion.

This second method should be used in all cases where the graded area is considerable and the final relief form is not a plane. If the contours be carefully determined and be taken

[^2]near enough together, the method will give as accurate results as may be obtained in any other way. The volume may be computed by eq. (3) of this article, where the areas are the horizontal sectional areas bounded by contours of equal elevation, and h is the vertical distance between contours.

When these methods are used for final estimates, the contours should be carefully determined, and spaced not more than two feet apart on steep slopes and one foot apart on low slopes.
313. The Prismoid is a solid having parallel end areas, and may be composed of any combination of prisms, cylinders, wedges, pyramids, or cones or frustums of the same, whose bases and apices lie in the end areas. It may otherwise be defined as a volume generated by a right-line generatrix moving on the bounding lines of two closed figures of any shapes which lie in parallel planes as directrices, the generatrix not necessarily moving parallel to a plane director. Such a solid would usually be bounded by a warped surface, but it can always be subdivided into one or more of the simple solids named above.

Inasmuch as cylinders and cones are but special forms of prisms and pyramids, and warped surface solids may be divided into elementary forms of them, and since frustums may also be subdivided into the elementary forms, it is sufficient to say that all primoids may be decomposed into prisms, wedges, and pyramids. If a formula can be found which is equally applicable to all of these forms, then it will apply to any combination of them. Such a formula is called
314. The Prismoidal Formula.

Let $A=$ area of the base of a prism, wedge, or pyramid;
$A_{1} A_{m}, A_{2}=$ the end and middle areas of a prismoid, or of any of its elementary solids;
$h=$ altitude of the prismoid or elementary solid.

Then we have, For Prisms,

$$
V=h A=\frac{h}{6}\left(A_{1}+4 A_{m}+A_{2}\right) \ldots . .(\mathrm{I})
$$

For Wedges,

$$
\begin{equation*}
V=\frac{\hbar A}{2}=\frac{\hbar}{6}\left(A_{1}+4 A_{m}+A_{2}\right) \ldots \tag{2}
\end{equation*}
$$

For Pyramids,

$$
\begin{equation*}
V=\frac{h A}{3}=\frac{h}{6}\left(A_{1}+4 A_{m}+A_{2}\right) \ldots . \tag{3}
\end{equation*}
$$

Whence for any combination of these, having all the common altitude h, we have

$$
\begin{equation*}
V=\frac{\hbar}{6}\left(A_{1}+4 A_{m}+A_{2}\right), \cdots \cdots \tag{4}
\end{equation*}
$$

which is the prismoidal formula.
It will be noted that this is a rigid formula for all prismoids. The only approximation involved in its use is in the assumption that the given solid may be generated by a right line moving over the boundaries of the end areas.

This formula is used for computing earthwork in cuts and fills for railroads, streets, highways, canals, ditches, trenches, levees, etc. In all such cases, the shape of the figure above the natural surface in the case of a fill, or below the natural surface in the case of a cut, is previously fixed upon, and to complete the closed figure of the several cross-section areas only the outline of the natural surface of the ground at the section remains to be found. These sections should be located so near together that the intervening solid may fairly be as
sumed to be a prismoid. They are usually spaced 100 feet apart, and then intermediate sections taken if the irregularities seem to require it.

The area of the middle section is never the mean of the two end areas if the prismoid contains any pyramids or cones among its elementary forms. When the three sections are similar in form, the dimensions of the middle area are always the means of the corresponding end dimensions. This fact often enables the dimensions, and hence the area of the middle section, to be computed from the end areas. Where this cannot be done, the middle section must be measured on the ground, or else each alternate section, where they are equally spaced, is taken as a middle section, and the length of the prismoid taken as twice the distance between cross-sections. For a continuous line of earthwork, we would then have, in cubic yards,

$$
\begin{equation*}
V=\frac{l}{3 \times 27}\left(A_{1}+4 A_{8}+2 A_{3}+4 A_{4}+2 A_{6}+4 A_{6} \ldots+A_{n}\right), \tag{I}
\end{equation*}
$$

where l is the distance between sections in feet. This is the same as equation (3), p. 40 I . Here the assumption is made that the volume lying between alternate sections conforms sufficiently near to the prismoidal forms.
315. Areas of Cross-sections. - In most cases, in practice at least, three sides of a cross-section are fixed by the conditions of the problem. These are the side slopes in both cuts and fills, the bottom in cuts and the top in embankments, or fills. It then remains simply to find where the side slopes will cut the natural surface, and also the form of the surface line on the given section. Inasmuch as stakes are usually set at the points where the side slopes cut the surface, whether in cut or fill, such stakes are called slope-stakes, and they are set at the time
the cross-section is taken. The side slopes are defined as so much horizontal to one vertical. Thus a slope of $\mathrm{I} \frac{1}{2}$ to I means that the horizontal component of a given portion of a slopeline is $\mathrm{I} \frac{1}{2}$ times its vertical component, the horizontal component always being named first. The slope-ratio is the ratio of the horizontal to the vertical component, and is therefore always the same as the first number in the slope-definition. Thus for a slope of $\mathrm{I}_{\frac{1}{2}}$ to I the slope-ratio is $\mathrm{I}_{\frac{1}{2}}$.
316. The Centre and Side Heights.-The centre heights are found from the profile of the surface along the centre line, on which has been drawn the grade line of the proposed work. These are carefully drawn on cross-section paper, when the height of grade at each station above or below the surface line can be taken off. These centre heights, together with the width of base and side slopes in cuts and in fills, are the necessary data for fixing the position of the slope-stakes. When these are set for any section as many poirts on the surface line joining them may be taken as desired. In ordinary rolling ground usually no intermediate points are taken, the centre point being already determined. In this case three points in the surface line are known, both as to their distance out from the centre line and as to their height above the grade line. Such sections are called "three-level sections," the surface lines being assumed straight from the slope-stakes to the centre stake.

317. The Area of a Three-level Section.

Let d and d^{\prime} be the distances out, and
h and h^{\prime} the heights above grade of right and left slopestakes, respectively;
D the sum of d and d^{\prime},
c the centre height,
r the slope-ratio,
w the width of bed.

Then the area $A B C D E$ is equal to the sum of the four trian. gles $A E w, B C w, w C D$, and $w E D$. Or,

$$
\begin{equation*}
A=\frac{\left(d+d^{\prime}\right) c+\left(h+h^{\prime}\right) \frac{w}{2}}{2} . \tag{I}
\end{equation*}
$$

This area is also equal to the sum of the triangles $F C D$ and $F E D$, minus the triangle $A F B$. Or,

$$
\begin{equation*}
A=\left(c+\frac{w}{2 r}\right) \frac{D}{2}-\frac{w^{2}}{4 r} \tag{2}
\end{equation*}
$$

Fig. 112.
Equation (2) can also be obtained directly from equation (I) by substituting for h and h^{\prime} in (I) their values in terms of d and $w, h=\frac{d-\frac{w}{2}}{r}$, and then putting $D=d+d^{\prime}$. Equation
(2) has but two variables, c and D, and is the most convenient one to use.
318. Cross-sectioning.-It will be seen from Fig. iI2 that in the case of a three-level section the only quantities to be determined in the field are the heights, h and h^{\prime}, and the distances out, d and d^{\prime}, of the slope-stakes. These are found by trial. A levelling instrument is set up so as to read on the
three points C, D, E, and the rod held first at D. The reading here gives the height of instrument above this point. Add this algebraically to the centre height (which may be negative, and which has been obtained from the profile for each station), and the sum is the height of instrument above (or below) the grade line. If the ground were level transversely, the distance out to the slope-stakes would be

$$
d=c r+\frac{w}{2} .
$$

But this is not usually the case, and hence the distance out must be found by trial. If the ground slopes $\left\{\begin{array}{c}\text { down } \\ \text { up }\end{array}\right\}$ from the centre line in a $\left\{\begin{array}{l}\text { fill } \\ \text { cut }\end{array}\right\}$ the distance out will evidently be more than that given by the above equation, and vice versa. The rodman estimates this distance, and holds his rod at a certain measured distance out, d_{1}. The observer reads the rod, and deducts the reading from the height of instrument above grade (or adds it to the depth of instrument below grade), and this gives the height of that point, h_{1}, above or below grade. Its distance out, then, should be $d=h_{1} r+\frac{w}{2}$. If this be more than the actual distance out, d_{1}, the rod is set farther out; if less, it is moved in. The whole operation is a very simple one in practice, and the rodman soon becomes very expert in estimating nearly the proper position the first time.

In heavy work-that is, for large cuts or fills, and for irregular ground-it may be necessary to take the elevation and distance out of other points on the section in order to better determine its area. These are taken by simply reading on the rod at the critical points in the outline, and measuring the distances out from the centre. The points can then be plotted
on cross-section paper and joined by straight or by free-hand curved lines. In the latter case the area should be determined by planimeter.
319. Three-level Sections, the Upper Surface consisting of two Warped Surfaces.-If the three longitudinal lines joining the centre and side heights on two adjacent threelevel sections be used as directrices, and two generatrices, one on each side the centre, be moved parallel to the end areas as plane directers, two warped surfaces are generated, every crosssection of which parallel to the end areas is a three-level section. These same surfaces could be generated by two longitudinal generatrices, moving over the surface end-area lines as directrices. The surface would therefore be a prismoid, and its exact volume would be given by the prismoidal formula. The middle area in this case is readily found, since the center and side heights are the means of the corresponding end dimensions.

The prismoidal formula, giving volumes in cubic yards,

$$
\begin{equation*}
V=\frac{l}{6 \times 27}\left(A_{1}+4 A_{m}+A_{2}\right), \quad \cdots \cdots \tag{I}
\end{equation*}
$$

could therefore be written

$$
\begin{align*}
V=\frac{l}{12 \times 27}\left[\left(c_{1}\right.\right. & \left.+\frac{z v}{2 r}\right) D_{1}+\left(c_{2}+\frac{w}{2 r}\right) D_{2} \\
& \left.+4\left(c_{m}+\frac{w}{2 r}\right) D_{m}\right]-\frac{l w w^{2}}{4 \times 27 r} . \tag{2}
\end{align*}
$$

This equation is derived directly from eq. (I) above, and eq. (2), p. 406. The quantity $\frac{w}{2 r}$ is the distance from the grade-plane
to the intersection of the side slopes, and is a constant for any given piece of road. It would have different values, however, in cuts and fills on the same line.

For brevity, let

$$
\frac{w}{2 r}=c_{0} ; \quad \text { and } \quad \frac{l w w^{2}}{4 \times 27 r}=\frac{l w c_{0}}{54}=K
$$

Here K is the volume of the prism of earth, 100 feet long, included between the roadbed and side slopes. It is first included in the computation and then deducted. It is also a constant for a given piece of road.

Equation (2) now becomes

$$
V=\frac{l}{12 \times 2 \eta}\left[\left(c_{1}+c_{0}\right) D_{1}+\left(c_{2}+c_{0}\right) D_{2}+4\left(c_{m}+c_{0}\right) D_{m}\right]-K, .(3)
$$

where c_{m} and D_{m} are the means of $c_{1} c_{2}$ and $D_{1} D_{2}$, respectively.
This equation involves but two kinds of variables, c and D, and is well adapted to arithmetical, tabular, or graphical computation. Thus if $l=100 ; w=18$; and $r=1 \frac{1}{2}$; then $c_{0}=6$; and $K=200$; and equation (3) becomes

$$
\begin{equation*}
V=\frac{100}{324}\left[\left(c_{1}+6\right) D_{1}+\left(c_{2}+6\right) D_{2}+4\left(c_{m}+6\right) D_{m}\right]-200 \tag{4}
\end{equation*}
$$

If the total centre heights (to intersection of side slopes) be represented by C_{1}, C_{2}, and C_{m}, then eq. (3) becomes, in general,

$$
\begin{equation*}
V=K^{\prime}\left(C_{1} D_{1}+C_{2} D_{2}+4 C_{m} D_{m}\right)-K, . \tag{5}
\end{equation*}
$$

where $K^{\prime}=\frac{100}{324}$, and is independent of width of bed and of slopes.

For any given piece of road, the constants K, K^{\prime}, and c_{0} are known, and for each prismoid the C 's and D 's are observed, hence for any prismoid all the quantities in eq. (5) are known.
320. Construction of Tables for Prismoidal Computa-tion.-If a table were prepared giving the products $K^{\prime} C D$ for various values of C and D, it could be used for evaluating equation (3), which is the same as equation (5). The arguments would be the total widths $\left(D_{1}\right)$, and the centre heights $\left(C_{1}\right)$. Such a table would have to be entered three times for each prismoid, first with C_{1} and D_{1}; second with C_{2} and D_{2}; and finally with C_{m} and D_{m}. If four times the last tabular value be added to the sum of the other two, and K subtracted, the result is the true volume of the prismoid.
values of $c_{o}\left(=\frac{z v}{2 r}\right)$ And $K\left(=\frac{l z v^{2}}{4 \times 2 \eta r}\right)$ FOR various widths AND SLOPES.

Width Roadbed.	Stopes.															
	2/2 to 1.		2/2 to 1.		3/4 to 1.		1 to 1.		11/2 to 1.		$11 / 2$ to 1.		$13 / 4$ to 1.		2 to 1.	
	C_{0}	K														
10	20	370	10	185	6.7	123	5.0	93	4.0	74	$3 \cdot 3$	62	2.9	53	2.5	46
11	22	448	II	224	$7 \cdot 3$	149	5.5	112	4.4	90	3.7	75	3.1	64	2.8	56
12	24	533	12	266	8.0	178	6.0	133	4.8	107	4.0	89	$3 \cdot 4$	76	3.0	67
13	26	626	13	313	8.7	209	6.5	157	5.2	125	$4 \cdot 3$	104	$3 \cdot 7$	89	3.2	78
14	28	725	14	${ }_{3} 6$	$9 \cdot 3$	242	7.0	181	5.6	145	4.7	121	4.0	104	3.5	9 F
15	30	833	15	417	10.0	278	7.5	208	6.0	167	5.0	I39	$4 \cdot 3$	119	3.8	104
16	32	948	16	474	10.7	316	8.0	237	6.4	190	$5 \cdot 3$	158	4.6	135	4.0	118
17	34	1070	17	535	II. 3	357	8.5	268	6.8	${ }^{214}$	5.7	178	4.9	153	4.2	134
18	36	1200	18	600	12.0	400	9.0	300	7.2	240	6.0	200	5.1	171	4.5	150
19	38	1337	19	668	12.7	446	9.5	334	7.6	267	6.3	223	$4 \cdot 4$	191	4.8	167
20	40	I48I	20	740	13.3	494	10.0	370	8.0	296	6.7	247	5.7	212	5.0	185
21	42	1633	21	816	14.0	544	10.5	408	8.4	327	7.0	272	6.0	233	5.2	204
22	44	${ }^{1793}$	22	896	14.7	598	II.O	448	8.8	359	7.3	299	6.3	256	$5 \cdot 5$	224
23	46	1959	23	980	15.3	653	II. 5	490	9.2	392	7.7	326	6.6	280	5.8	245
24	48	2134	24	1067	16.0	711	12.0	534	9.6	427	8.0	356	6.9	305	6.0	267
25	50	2315	25	1158	16.7	772	12.5	579	10.0	463	8.3	386	7.1	331	6.2	264
26	52	2504	26	1252	17.3	835	13.0	626	10.4	501	8.7	417	7.4	358	6.5	313
27	54	2700	27	1350	18.0	900	13.5	675	10.8	540	9.0	450	7.7	386	6.8	33^{8}
28	56	2904	28	1452	18.7	968	14.0	726	II.2	581	9.3	484	8.0	415	7.0	363
29	58	3115	29	1558	19.3	1038	14.5	779	I1. 6	623	9.7	519	83	445	7.2	389
30	60	3333	30	1667	20.0	IIII	15.0	833	12.0	667	10.0	556	8.6	476	7.5	417

Table XI.* is such a table, computed for total centre heights from 1 to 50 feet, and for total widths from 1 to 100 feet. In railroad work neither of these quantities can be as small as one foot, but the table is designed for use in all cases where. the parallel end areas may be subdivided into an equal number of triangles or quadrilaterals.

Example 1. Three-level Ground having two Warped Surfaces.-Find the volume of two prismoids of which the following are the field-notes, the width of bed being 20 feet, and the slopes $\mathrm{I} \frac{1}{2}$ to I .

Station 11.	$\frac{28.9 \dagger}{+12.6}$	$\frac{0}{+18.6}$	$\frac{43.0}{+22.0}$
Station 12.	$\frac{27.1}{+11.4}$	$\frac{0}{+14.8}$	$\frac{40.3}{+20.2}$
Station 12 +56.	$\frac{24.3}{+9.5}$	$\frac{0}{\mp 10.3}$	$\frac{34.9}{\mp 16.6}$

From the table, p. 410, giving values of C_{0} and K, we find for $w=20$, and $r=1 \frac{1}{2}, C_{0}=6.7$, and $K=247$.

The computation may be tabulated as follows:

Sta.	Width, $D=d+d^{\prime}$	Height, $C=c+c_{0}$	Partial Volume.	Volume of Prismoid.
II	71.9	25.3	562	
M	69.6	23.4	$503 \times 4=2012$	
12	67.4	21.5	$\frac{447}{3021}-247$	2774
M	63.3	19.2	$374 \times 4=1496$	
12 +56	59.2	17.0	$\left.\frac{311}{(2254}-247\right)$	1124

* Modeled somewhat after Crandall's Tables, but adapted to give volumes by the Prismoidal Formula at once instead of by the method of mean end areas first and correcting by the aid of another table to give prismoidal volumes, as Prof. Crandall has done.
\dagger The numerators are the distances out, and the denominators are the heights above grade,+ denoting cut and - fill.

Entering the table (No. XI.) for a width of 71 and a height of 25 , we find 548, to which add 7 for the 3 tenths of height, and 7 more for the 9 tenths in width, both mentally, thus giving 562 cu . yds. for this partial volume. Similarly for the width 67.4 , and height 21.5 , obtaining 447 cu . yds. The corresponding result for the middle area is 503 , which is to be multiplied by 4 , thus giving $2012 \mathrm{cu} . \mathrm{yds}$. The sum of these is 302 I cu. yds ., from which is to be subtracted the constant volume K, which in this case is 247 cu . yds., leaving $2774 \mathrm{cu} . \mathrm{yds}$. as the volume of the prismoid.

The next prismoid is but 56 feet long, but it is taken out just the same as though it were full, and then 56 hundredths of the resuiting volume taken. The data for the 12 th station is used in getting this result without writing it again on the page.

Example 2. Five-level Ground having four Warped Surfaces.-Find the volume of a prismoid of which the following are the field-notes, the width of bed being 20 feet, and the slopes $\mathrm{I}_{\frac{1}{2}}$ to I :

$$
\begin{aligned}
& \text { 11. } \frac{28.9}{+12.6} \quad \frac{15.0}{+12.0} \\
& \text { 12. } \frac{0}{+18.6} \\
& \frac{27.1}{+11.4}
\end{aligned} \frac{20.0}{+21.0} \quad \frac{12.5}{+12.0} \quad \frac{0}{+14.8} \quad \frac{18.5}{+19.6} \quad \frac{40.3}{+20.2}
$$

This is the same problem as the preceding, with intermediate heights added.

To compute this from the table, it is separated into three prismoids, as shown in Fig. II3.

Fig. if3.

Let $A B D G C F E$ be the cross-section. This may be separated into the triangle $A B C$, and the two quadrilaterals $B C G D$ and $A C F E$. The area of the triangle is $\frac{1}{2} c w$. That of the right quadrilateral is, from Art. 179, p. 202,

$$
\begin{aligned}
& \left.\frac{1}{2}\left[c\left(d_{k}-\frac{w}{2}\right)+k\left(d_{h}-0\right)+h\left(\frac{w}{2}-d_{k}\right)\right)\right]=\frac{1}{2}\left[(c-h)\left(d_{k}-\frac{w \prime}{2}\right)+k d_{n}\right] . \\
& \text { Similarly the area of the left quadrilateral is } \quad \frac{1}{2}\left[\left(c-h^{\prime}\right)\left(d^{\prime \prime}{ }_{k}-\frac{w}{2}\right)+k^{\prime} d^{\prime}{ }_{h}\right] . \cdot=
\end{aligned}
$$

The total area of the section then is

$$
\begin{equation*}
A=\frac{1}{2}\left[\left(c-h^{\prime}\right)\left(d^{\prime}{ }_{k}-\frac{w}{2}\right)+k^{\prime} d^{\prime}{ }_{n}+c w+k d_{n}+(c-h)\left(d_{k}-\frac{w}{2}\right)\right] . . \tag{I}
\end{equation*}
$$

If the interior side elevations be taken over the edges of the base, then $d_{k}-\frac{w}{2}$ and $d_{k}-\frac{w}{2}$ both become zero, and the first and last terms disappear. Or if the centre and extreme side heights are the same, these terms go out. Experience shows that these terms can usually be neglected without material error. If they are retained, each partial volume will be composed of five terms, while if they are neglected there will be but three. The signs of these terms also must be carefully attended to. When the interior side readings are taken over the edges of the base, therefore, this equation becomes

$$
\begin{equation*}
A=\frac{1}{2}\left(k^{\prime} d^{\prime}{ }_{h}+c w+k d_{h}\right) \tag{2}
\end{equation*}
$$

The tables are well adapted to compute the prismoidal volume for five-level sections by either of these formulæ. Thus, if the adjacent section also has five points determined in its surface, its area may be represented by an equation similar to one of these, and from these end-area data mean values may be found for the corresponding middle-area points, and the volumes taken out as before. In this case the prism included between the road-bed and side-slopes, whose volume is K, is not included, and hence its volume is not to be deducted from the result. The computation by table XI. of equation (1) would be as follows:

Sta.	h^{\prime}.	$d^{\prime \prime}{ }^{\text {b }}$	k^{\prime}.	$d^{\prime \prime}{ }^{*}$	c.	$d_{k^{*}}$	k.	d_{h}.	h.	Partial Volumes.	Total Volume.
II	12.6		12.0	15.0	18.6	20.0	1.0	43.0	22.0	+9+108+114+279-10 $=500$	
M			12.0	13.8	16.7	x9.2		4 I .6	$21 . x$	$4(+6+104+102+260-12)=1840$	
12	11.4	27.1	12.0	12.5	14.8	18.5	19.6	40.3	20,2	$+3+100+90+242-13=422$	2762

The use of the table is the same as before. First take out from the table the volume corresponding to $\left(c-h^{\prime}\right)\left(d^{\prime}{ }_{k}-\frac{w}{2}\right)$, which when evaluated for section II is $(18.6-12.6)(15.0-10)=6.0 \times 5.0$. This is positive, and the volume corresponding to a depth of 6.0 feet and a width of 5.0 feet is 9 cubic yards. Proceed to evaluate the remaining terms of eq. (1) in a similar manner, the last term coming out negative. The dimensions of the mid section are the means of the corresponding end dimensions, as before. If one end-area is a three-level section and the next a five-level section, the included prismoid is computed as a five-level prismoid, the vanishing points in the three-level section corresponding to the interior side elevations on the five-level section being indicated in the field. Partial stations, or prismoids, are first computed as though they were roo feet long (for which the table is constructed), and then multiplied by their length and divided by 100 as before.

If equation (2) may be used, the work is shortened very much. The columns in $h^{\prime}, d^{\prime}{ }_{k}, d_{k}$, and h, may be omitted, and there will also be but three terms in each partial product. Thus, if sections II and I2 had been taken with the interior elevations, each ro feet from the centre line, we might have had something as follows :

$$
\begin{aligned}
& \text { II. } \frac{28.9}{+12.6} \\
& \begin{array}{lllll}
+15.4 & \frac{10.0}{+18.6} & \frac{10.0}{+19.8} & \frac{43.0}{+22.0} \\
\text { I2. } \frac{27.1}{+I I .4} & \frac{10.0}{+12.5} & \frac{0}{+14.8} & \frac{10.0}{+17.4} & \frac{40.3}{+20.2}
\end{array}
\end{aligned}
$$

The computation then, by eq. (2), would have been :

| Sta. | $d^{\prime \prime}{ }_{h}$ | k^{\prime}. | c. | k. | d_{h}. | Partial Volumes. | Total
 Volume. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| II | 28.9 | 15.4 | 18.6 | 19.8 | 43.0 | $137+114+263=514$ | |
| M | $28 . \mathrm{C}$ | 14.0 | 16.7 | 18.6 | 41.6 | $4(121+102+239)=1848$ | |
| I2 | 27.1 | 12.5 | 14.8 | 17.4 | 40.3 | $104+90+215=409$ | 2771 |

By this method the computation of a five-level section is little more trouble
than that of a three-level section, and yet the intermediate points taken at a distance of $\frac{w}{2}$ from the centre, are apt to increase the accuracy considerably on ordinary rolling ground.
321. Three-level Sections, the Surface divided into four Planes by Diagonals.-If the surface included between two three-level sections be assumed to be made up of four planes formed by joining the centre height at one end with a side, height at the other end section on each side the centre line (Fig. 114), these lines being called diagonals, an exact computation of the volume is readily made without computing the mid-area. Two diagonals are possible on each side the centre line but the one is drawn which is observed to most nearly fit the surface. They are noted in the field when the cross-sections are taken.

The total volume of such a prismoid in cubic * yards is

$$
\begin{align*}
V=\frac{l}{6 \times 27}\left[\left(d_{1}+\right.\right. & \left.d_{1}^{\prime}\right) c_{1}+\left(d_{2}+d_{2}^{\prime}\right) c_{2}+D C+D^{\prime} C^{\prime} \\
& \left.+\frac{w}{2}\left(h_{1}+h_{2}+H+h_{1}^{\prime}+h_{2}^{\prime}+H^{\prime}\right)\right],{ }^{*} \tag{I}
\end{align*}
$$

where c_{1}, h_{1}, and h_{1}^{\prime} are the centre and side heights at one section and d_{1} and d_{1}^{\prime} the distances out, $c_{2}, h_{2}^{\prime}, h_{2}, d_{2}$, and d_{2}^{\prime} be-

[^3]ing the corresponding values for the other end section. C and C^{\prime} are the centre heights, H and H^{\prime} the side heights, and D and D^{\prime} the distances out on the right and left diagonals. Although this formula seems long, the computations by it are very simple. Thus let the volume be found from the following field-notes for a base of 20 feet and side slopes $\mathrm{I}_{\frac{1}{2}}$ to I .

The upper figures indicate the distances out and those below the lines the heights, the plus sign being used for cuts. The computation in tabular form is as follows:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta. \& d. \& h. \& c. \& h^{\prime}. \& $d^{\prime \prime}$. \& $d+d^{\prime \prime}$. \& $\left(d+d^{\prime}\right) c_{\text {c }}$ \& $D C$. \& $D^{*} C^{*}$.

\hline \multirow[t]{6}{*}{} \& 22
34 \& $$
\begin{array}{r}
8 \\
16
\end{array}
$$ \& 8 \& \& $47 \cdot 5$
16 \& 69.5
50.0 \& 556
200 \& \cdots \& 128.

128

\hline \& \& \& +h \& 24 \& \& \& 88 \& \&

\hline \& \& \& + ${ }^{\text {r }}$ \& 12 \& \& \& 128 \& \&

\hline \& \& \& $\Sigma h '$ \& 65 \& . 0 \& \& $=650$ \& \&

\hline \& \& \& \& \& \& \& 6) $\overline{162200}$ \& \&

\hline \& \& \& \& \& \& \& $2 7 \longdiv { 2 7 0 3 3 }$ \& \&

\hline
\end{tabular}

The great advantage of the method consists in the data all being at hand in the field-notes.

Hudson's Tables * give volumes for this kind of prismoid.

[^4]They furnish a very ready method of computing volumes whet: this system is used.
322. Comparison of Methods by Diagonals and by Warped Surfaces.-Although the surveyor has a choice oi two sets of diagonals when this method is used, the real surface would usually correspond much nearer the mean of the two pairs of plane surfaces than to either one of them. That is, the natural surface is curved and not angular, and therefore it is probable that two warped surfaces joining two three-level sections would generally fit the ground better than four planes, notwithstanding the choice that is allowed in the fitting of the planes. More especially must this be granted when the truth of the following proposition is established.

Proposition: The volume included between two three-level sections Raving their corresponding surface lines joined by warped surfaces, is exactly a mean between the two volumes formed between the same end sections by the two sets of planes resulting from the two sets of diagonals which may be drawn.

If the two sets of diagonals be drawn on each side the centre line and a crosi-section be taken parallel to the end areas, the traces of the four surface planes on each side the centre line on the cutting plane will form a parallelogram, the diagonal of which is the trace of the warped surface on this cutting plane. Since this cutting plane is any plane parallel to the end areas, and since the warped surface line bisects the figure formed by the two sets of planes formed by the diagonals, it follows that the warped surface bisects the volume formed by the two sets of planes. The proposition will therefore be established if it be shown that the trace of the warped surface is the diagonal of the parallelogram formed by the traces of the four planes formed by the two sets of diagonals. Fig. 115 shows an extreme case where the centre height is higher than the side height at one end and lower at the other. Only the left half of the prismoid is shown in the figure. The
cutting plane cuts the centre and side lines and the two diagonals in $\epsilon f g h$ on the plane, and in $e^{\prime} f^{\prime} g^{\prime} h^{\prime}$ on the vertical projection. For the diagonal $c_{1} d_{2}$ the surface lines cut out are $e^{\prime} f^{\prime}$ and $f^{\prime} h^{\prime}$. For the diagonal $c_{2} d_{1}$ they are $e^{\prime} g^{\prime}$ and $g^{\prime} k^{\prime}$. For the warped surface the line cut out is $e^{\prime} h^{\prime}$, this being an

Fig. 115.
element of that surface. It remains to show that $e^{\prime} f^{\prime} h^{\prime} g^{\prime}$ is a parallelogram.

Since the cutting plane is parallel to the end planes all the lines cut are divided proportionally. That is, if the cutting plane is one $n^{\text {th }}$ of l from c_{2}, then it cuts off one $n^{\text {th }}$ of all the lines cut, measured from that end plane. But if the lines are divided proportionally, the projections of those lines are divided proportionally, and hence the points $e^{\prime}, f^{\prime}, h^{\prime}, g^{\prime}$ divide
the sides of the quadrilateral $d_{2}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, d_{1}^{\prime}$ proportionally. But it is a proposition in geometry that if the four sides of a quadrilateral, or two opposite sides and the diagonals, be divided proportionally and the corresponding points of subdivision joined, the resulting figure is a parallelogram. Therefore $e^{\prime} f^{\prime} h^{\prime}$ g^{\prime} is a parallelogram, and $e^{\prime} h^{\prime}$ is one of its diagonals and hence bisects it. Whence the surface generated by this line moving along $c_{1} c_{2}$ and $d_{1} d_{2}$ parallel to the end areas bisects the volume formed by the four planes resulting from the use of both diagonals on one side the centre line. Q. E. D.

It is probable, therefore, that the warped surface would usually fit the ground better than either of the sets of planes, formed by the diagonals. Furthermore, the errors caused by the use of the warped surface (Table XI.) are compensating errors, thus preventing any marked accumulation of errors in a series of prismoids.* There are extreme cases, however, such as that given in the example, Fig. II4, which are best computed by the method by diagonals.
323. Preliminary Estimate from the Profile. -If the cross-sections be assumed level transversely then for given width of bed and side slopes, a table of end areas may be prepared in terms of the centre heights. From such a table the

[^5]end areas may be rapidly taken out and plotted as ordinates from the grade line. The ends of these ordinates may then be joined by a free-hand curve, and the area of this curve found by the planimeter. The ordinates may be plotted to such a scale that each unit of the area, as one square inch, shall represent a convenient number of cubic yards, as 1000. The record of the planimeter then in square inches and thousandths gives at once the cubic yards on the entire length of líne worked over by simply omitting the decimal point. Evidently the scale to which the ordinates are to be drawn to give such a result is not only a function of the width of bed and side slopes, but also of the longitudinal scale to which the profile line is plotted. The area of a level section is
\[

$$
\begin{equation*}
A=w c+r c^{2}, . \tag{1}
\end{equation*}
$$

\]

where w, c, and r are the width of base, centre height, and slope-ratio respectively.

Now if $h=$ the horizontal scale of the profile, that is the number of feet to the inch, and if one square inch of area is to represent 1000 cu . yards, the length of the ordinate must be

$$
\begin{equation*}
y=\frac{h A}{1000 \times} \frac{h 7}{27}=\frac{h\left(w c+r c^{2}\right)}{27,000} . \tag{2}
\end{equation*}
$$

If values be given to h, w, and r, which are constants for any given case, then the value of y becomes a function of c only, and a table can be easily prepared for the case in hand. Since y is a function of the second power of c, the second difference will be a constant, and the table can be prepared by means of first and second differences. Thus if c takes a small increment, as I foot, then the first difference is

$$
\begin{equation*}
\Delta^{\prime} y=\frac{h}{27,000}(w+2 r c+r) . \tag{3}
\end{equation*}
$$

But this first difference is also a function of c, and hence when c takes an increment this first difference changes by an amount equal to

$$
\begin{equation*}
\Delta^{\prime \prime} y=\frac{h}{27000} \cdot 2 r \tag{4}
\end{equation*}
$$

which is constant. An initial first difference being given for a certain value of c, a column of first differences can be obtained by simply adding the $\Delta^{\prime \prime} y$ continuously to the preceding sum. With this column of first differences the corresponding column of values of y may be found by adding the first differences continuously to the initial value of y for that column.*

TABULAR VALUES OF y IN EQUATION (2) FOR $w=20, r=\mathrm{I} \frac{1}{2}$, AND $h=400$.

c	-.'o	0.' I	0.12	0.13	-. ${ }^{\prime} 4$	-. ${ }^{\prime}$	0.6	0.'7	-. ${ }^{\prime} 8$	-.'9
-	$\begin{aligned} & \text { in. } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.03 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.06 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.09 \end{aligned}$	$\begin{gathered} \operatorname{in.}_{1} \\ 0.12 \end{gathered}$	$\begin{aligned} & \text { in. } \\ & 0.15 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & \text { o. } 19 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.22 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.25 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.28 \end{aligned}$
1	. 32	-35	-39	. 42	. 46	. 49	. 53	. 57	.61	. 64
2	. 68	. 72	. 76	. 80	. 84	. 88	. 92	. 96	1.00	1.05
3	1.09	1.13	1.17	1.22	1.26	1.3r	1. 35	1.40	1.45	1.49
4	x. 54	1.59	1. 63	1. 69	1. 73	1.78	1.83	1.88	1.93	1.99
5	2.04	2.09	2.14	2.19	2.24	2.30	2.36	2.41	2.47	3.52
6	2.58	2.63	2.69	2.75	2.80	2.87	2.92	2.98	3.04	3.10
7	3.16	3.22	3.28	3.35	3.41	3.47	3.54	3.60	3.66	3.73
8	3.79	3.86	3.92	3.99	4.05	4.13	4.19	4.26	4.33	4.40
9	4.47	4.54	4.60	4.68	4.75	4.82	4.89	4.97	5.04	5.11
10	5.18	5.26	$5 \cdot 33$	$5 \cdot 40$	5.48	5.56	5.64	5.72	5.79	5.87
11	5.95	6.03	6.10	6.18	6.26	6.35	6.43	6.51	6.59	6.67
12	6.76	6.84	6.92	7.00	7.09	7.18	7.26	7.35	7.43	7.52
13	7.61	7.70	7.78	7.86	796	8.05	8.14	8.23	8.32	8.41
14	8.50	8.60	8.68	8.77	8.87	8.97	9.06	9.16	9.25	9.35
15	9.44	9.54	9.63	9.73	9.83	9.94	10.03	10.13	10.23	10.33
16	10.43	10.53	10.62	10.73	10.83	10.94	11.04	11.15	11.25	11. 35
17	1 x .46	11.56	11.66	11.77	11.88	12.00	12.10	12.21	12.31	12.42
18	12.53	12.64	12.75	12.86	12.97	13.09	13.20	13.32	13.42	13.54
19	13.65	13.77	13.87	13.99	14.10	14.23	14.34	14.47	14.58	14.70
20	54, 85	14.93	15.04	15.16	15,29	15.42	55.53	15.66	15.78	15.93

[^6]The preceding table was constructed in this manner, for $z v=20$ feet, $r=\mathrm{I} \frac{1}{2}$; and $h=400$ feet to the inch.
324. Borrow-pits are excavations from which earth has been "borrowed" to make an embankment. It is generally preferable to measure the earth in cut rather than in fill, hence when the earth is taken from borrow-pits and its volume is to be computed in cut, the pits must be carefully staked out and elevations taken both before and after excavating. The methods given in art. 3II are well suited to this purpose, or they may be computed as prismoids by the aid of Table XI., if preferred. To use the table it is only necessary to enter it with such heights and widths as give twice the elementary areas (triangles or quadrilaterals) into which the end sections are divided, and then multiply the final result by the length and divide by 100 . The table is entered for both end-area dimensions and also the mid-area dimensions, four times this latter result being taken the same as before.
325. Shrinkage of Earthwork.-Excavated earth first increases in volume, when removed from a cut and dumped on a fill, but it gradually settles, or shrinks, until it finally comes to occupy a less volume than it formerly did in the cut. Both the amounts, initial increase, and final shrinkage depend on the nature of the soil, its condition when removed, and the manner of depositing it in place. There can therefore be no general rules given which will always apply. For ordinary clay and sandy loam, dumped loosely, the first increase is about one twelfth, and then the settlement about one sixth of this increased volume, leaving a final volume of about nine tenths of the original volume in cut.*

Thus for 100 cubic yards of settled embankment III cubic yards in cut would be required. But a contractor should have

[^7]his stakes or poles set one fifth higher than the corresponding fill, so that when filled to the tops of these, a settlement of one sixth will bring the surface to the required grade.

These changes of volume are less for sand and more for stiff, wet clay.

For rock the permanent increase in volume is from 60 to 80 per cent, the greater increase corresponding to a smaller average size of fragment.
326. Excavations under Water.-It is often necessary to determine the volume of earth, sand, mud, or rock removed from the beds of rivers, harbors, canals, etc. If this be done by soundings alone, it is likely to work injustice to the contractor, as he wouid receive no pay for depths excavated below the required limit ; and besides, foreign material is apt to flow in and partially replace what is removed, so that the material actually excavated is not adequately shown by soundings within the required limits. It is common, therefore, to pay for the material actually removed, an inspector being usually furnished by the employer to see that no useless work is done beyond the proper bounds. The material is then measured in the dumping scows or barges. The unit of measure is the cubic yard, the same as in earthwork. There are two general methods of gauging scows, or boats. One is to actually measure the inside dimensions of each load, which is often done in the case of rock, and the other is to measure the displacement of the boat, which is the more common method with dredged material. When the barge is gauged by measuring its displacement, the water in the hold must always be pumped down to a given level, or else it must be gauged both before and after loading and the depth of water in the hold observed at each gauging. A displacement diagram (or table) is prepared for each barge, from its actual external dimensions, in terms of its mean draught. There should always be four gaugings taken to determine the draught, at four symmetrically located points
on the sides, these being one fourth the length of the barge from the ends. Fixed gauge-scales, reading to feet and tenths may be painted on the side of the barge, or if it is flat-bottomed, a gauging-rod, with a hook on its lower end at the cero of the scale, may be used and readings taken at these four points. Any distortion of the barge under its load, or any unsymmetrical loading, will then be allowed for, the mean of the four gauge-readings being the true mean draught of the boat.

To prepare a displacement diagram, the areas of the surfaces of displacement must be found for a series of depths uniformly spaced. This series may begin with the depth for no load, the hold being dry. They should then be found for each five tenths of a foot up to the maximum draught. If the boat has plane vertical sides and sloped ends these areas are rectangles, and are readily computed. If the boat is modelled to curved lines, the water-lines can be obtained from the original drawings of the boat, or else they must be obtained by actual measurement. In either case they can be plotted on paper, and their areas determined by a planimeter. These areas are analogous to the cross-sections in the case of railroad earthwork, and the prismoidal formula may be applied for computing the displacement. Thus,

Let $A_{0}, A_{1}, A_{2}, A_{3}$, etc., be the areas of the displaced water surfaces, taken at uniform vertical distances h apart. Then for an even number of intervals we have in cubic yards

$$
\begin{equation*}
V=\frac{h}{3 \times 27}\left(A_{0}+4 A_{1}+2 A_{2}+4 A_{3}+\ldots A_{n}\right) \tag{I}
\end{equation*}
$$

If the total range in draught be divided into six equal portions, each equal to h, then Weddel's Rule* would give a

[^8]nearer approximation. With the same notation as the above we would then have, in cubic yards,
\[

$$
\begin{equation*}
V=\frac{3 / 2}{10}\left[A_{0}+A_{2}+A_{4}+A_{6}+5\left(A_{1}+A_{3}+A_{5}\right)+A_{3}\right] \ldots \tag{2}
\end{equation*}
$$

\]

These rules are also applicable to the gauging of reservoirs, mill-ponds, or of any irregular volume or cavity.

After the displaced volume of water is found, the corresponding volume of earth or rock is found by applying a proper constant coefficient. This coefficient is always less than unity, and is the reciprocal of the specific gravity of the material. This must be found by experiment. In the case of soft mud it is nearly unity, while with sand and rock it is much more. When rock is purchased by the cubic yard, solid rock is not implied, but the given quality of cut or roughly-quarried rock, piled as closely as possible. When rock is excavated, solid rock is meant. A measured volume of any material put into a gauged scow will give the proper coefficient for that material. Thus if the measured volume V^{\prime} give a displacement of V, then $\frac{V^{\prime}}{V}=C$ is the coefficient to apply to the displacement to give the volume of that material.

TABLES.

TABLE I.

Trigonometric Formule.

Trigonometric Functions.

Let A (Fig. 10\%) $=$ angle $B A C=\operatorname{arc} B F$, and let the radius $A F=A B=$ $A H=1$.
We then have

$$
\begin{array}{ll}
\sin A & =B C \\
\cos A & =A C \\
\tan A & =D F \\
\cot A & =H G^{\prime} \\
\sec A & =A D \\
\operatorname{cosec} A & =A G \\
\operatorname{versin} A & =C F^{\prime}=B E \\
\operatorname{covers} A & =B K=H L \\
\text { exsec } A & =B D \\
\operatorname{coexsec} A & =B G \\
\operatorname{chord} A & =B F \\
\operatorname{chord} 2 A & =B I=2 B C
\end{array}
$$

Fig. 107.

In the right-angled triangle $A B C$ (Fig. 10\%)
Let $A B=c, A C=b$, and $B C=a$.
We then have :

1. $\sin A=\frac{a}{c}=\cos B$
2. $\cos A=\frac{b}{c}=\sin B$
3. $\tan A=\frac{a}{b}=\cot B$
4. $\cot A=\frac{b}{a}=\tan B$
5. $\sec A=\frac{c}{b}=\operatorname{cosec} B$
6. $\operatorname{cosec} A=\frac{c}{a}=\sec B$
7. vers $A=\frac{c-b}{c}=\operatorname{covers} B$
$8 \operatorname{exsec} A=\frac{c-b}{b}=\operatorname{coexsec} B$
8. covers $A=\frac{c-a}{c}=\operatorname{versin} B$
9. $\operatorname{coexsec} A=\frac{c-a}{a}=\operatorname{exsec} B$
10. $a=c \sin A=b \tan A$
11. $b=c \cos A=a \cot A$
12. $c=\frac{a}{\sin A}=\frac{b}{\cos A}$
13. $a=c \cos B=b \cot B$
14. $b=c \sin B=a \tan B$
15. $c=\frac{a}{\cos B}=\frac{b}{\sin B}$
16. $a=\sqrt{(c+b)(c-b)}$
17. $b=\sqrt{(c+\alpha)(c-\alpha)}$
18. $c=\sqrt{ } a^{2}+b^{2}$
19. $C=90^{\circ}=A+B$
20. are $=\frac{a b}{2}$

TA.BLE I.-Continued.
Trigonometric Formule.

Solution of Oblique Trlangles.			
	given.	sovgit.	Formules.
22	A, B, a	C, b, c	$\begin{gathered} C=180^{\circ}-(A+B), \quad b=\frac{a}{\sin A} \cdot \sin B, \\ c=\frac{a}{\sin A} \sin (A+B) \end{gathered}$
23	A, a, b	B, C, c	$\begin{gathered} \sin B=\frac{\sin A}{a} \cdot b, \quad C=180^{\circ}-(A+B) \\ c=\frac{a}{\sin A} \cdot \sin C \end{gathered}$
24	C, a, b	$12 \sim(A+B)$	$1 / 2(A+B)=90^{\circ}-1 / 2 C$
25		$1 / 2(A-B)$	$\tan 1 / 2(A-B)=\frac{a-b}{a+b} \tan 1 / 2(A+B)$
26		A, B	$\begin{aligned} & A=1 / 2(A+B)+1 / 2(A-B), \\ & B=1 / 2(A+B)-1 / 2(A-B) \end{aligned}$
27 28		area	$\begin{aligned} & c=(a+b) \frac{\cos 1 / 3(A+B)}{\cos 1 / 2(A-B)}=(a-b) \frac{\sin 1 / 2(A+B)}{\sin 1 / 2(A-B)} \\ & K=1 / 2 a b \sin C . \end{aligned}$
29	a, b, c	A	$\text { Let } s=1 / 2(a+b+c) ; \sin 1 / 2 A=\sqrt{\frac{(s-b)(s-c)}{b c}}$
30 31			$\begin{aligned} & \cos 1 / 2 A=\sqrt{\frac{s(s-a)}{b c}} ; \tan 1 / 8 A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\ & \sin A=\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{b c} ; \\ & \text { vers } A=\frac{2(s-b)(s-c)}{b c} \end{aligned}$
32 33	A, B, C, a	area area	$\begin{aligned} & K=\sqrt{s(s-a)(s-b)(s-c)} \\ & K=\frac{a^{2} \sin B \cdot \sin C}{2 \sin A} \end{aligned}$

TABLE I.-Continued.
Trigonometric Fornule.

	general formolas.
34	$\sin A=\frac{1}{\operatorname{cosec} A}=\sqrt{1-\cos ^{2} A}=\tan A \cos A$
35	$\sin A=2 \sin 1 / 2 A \cos 1 / 2 A=$ vers $4 \cot 1 / 2 A$
36	$\sin A=\sqrt{1 / 2 \mathrm{vers} 2 A}=\sqrt{1 / 2(1-\cos 2 A)}$
2\%	$\cos A=\frac{1}{\sec A}=\sqrt{1-\sin ^{2} A}=\cot A \sin A$
¿3	$\cos A=1-\mathrm{vers} A=2 \cos ^{2} 1 / 2 A-1=1-2 \sin ^{2} 1 / 2 A$
29	$\cos A=\cos ^{2} 1 / 2 A-\sin ^{2} 1 / 2 A=\sqrt{1 / 2+1 / 2 \cos 2 A}$
40	$\tan A=\frac{1}{\cot A}=\frac{\sin A}{\cos A}=\sqrt{\sec ^{2} A-1}$
41	$\tan A=\sqrt{\frac{1}{\cos ^{2} A}-1}=\frac{\sqrt{1-\cos ^{2} A}}{\cos A}=\frac{\sin 2 A}{1+\cos 2 A}$
42	$\tan A=\frac{1-\cos 2 A}{\sin 2 A}=\frac{\text { vers } 2 A}{\sin 2 A}=\operatorname{exsec} A \cot 1 / 2 A$
43	$\cot A=\frac{1}{\tan A}=\frac{\cos A}{\sin A}=\sqrt{\operatorname{cosec}^{2} A-1}$
44	$\cot A=\frac{\sin 2 A}{1-\cos 2 A}=\frac{\sin 2 A}{\operatorname{vers} 2 A}=\frac{1+\cos 2 A}{\sin 2 A}$
45	$\cot A=\frac{\tan 1 / 2 A}{\operatorname{exsec} A}$
46	vers $A=1-\cos A=\sin A \tan 1 / 2 A=2 \sin ^{2} 1 / 2 A$
47	vers $A=\operatorname{exsec} A \cos A$
48	$\operatorname{exsec} A=\sec A-1=\tan A \tan 1 / 2 A=\frac{\operatorname{vers} A}{\cos A}$
49	$\sin 1 / 2 A=\sqrt{\frac{1-\cos A}{2}}=\sqrt{\frac{\operatorname{vers} A}{2}}$
50	$\sin 2 A=2 \sin A \cos A$
51	$\cos 1 / 2 A=\sqrt{\frac{1+\cos A}{2}}$
52	$\cos 2 A=2 \cos ^{2} A-1=\cos ^{2} A-\sin ^{2} A=1-2 \sin ^{2} A$

TABLE I.-Continued.

Trigonometric Formule.

General Formulaf.

53. $\tan 1 / 2 A=\frac{\tan A}{1+\sec A}=\operatorname{cosec} A-\cot A=\frac{1-\cos A}{\sin A}=\sqrt{\frac{1-\cos \frac{A}{A}}{1+\cos }}$
54. $\tan 2 \boldsymbol{A}=\frac{2 \tan A}{1-\tan ^{2} A}$
55. $\cot .1 / 2 A=\frac{\sin A}{\operatorname{vers} A}=\frac{1+\cos A}{\sin A}=\frac{1}{\operatorname{cosec} A-\cot A}$
56. $\cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}$
57. $\operatorname{vers} 1 / 2 A=\frac{1 / 2 \operatorname{vers} A}{1+1 / 1-1 / 2 \operatorname{vers} A}=\frac{1-\cos A}{2+\sqrt{2(1+\cos A)}}$
58. vers $2 A=2 \sin ^{2} A$
59. $\operatorname{exsec} 1 / 2 A=\frac{1-\cos A}{(1+\cos A)+\sqrt{2(1+\cos A)}}$
60. exsec $2 A=\frac{\tan ^{2} A}{1-\tan ^{2} A}$
61. $\sin (A \pm B)=\sin A \cdot \cos B \pm \sin B \cdot \cos A$
62. $\cos (A \pm B)=\cos A \cdot \cos B \mp \sin A \cdot \sin B$
63. $\sin A+\sin B=2 \sin 1 / 2(A+B) \cos 1 / 2(A-B)$
64. $\sin A-\sin B=2 \cos 1 / 2(A+B) \sin 1 / 2(A-B)$
65. $\cos A+\cos B=2 \cos 1 / 2(A+B) \cos 1 / 2(A-B)$
66. $\cos B-\cos A=2 \sin 1 / 2(A+B) \sin 1 / 2(A-B)$
67. $\sin ^{2} A-\sin ^{2} B=\cos ^{2} B-\cos ^{2} A=\sin (A+B) \sin (A-B)$
68. $\cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B)$
69. $\tan A+\tan B=\frac{\sin (A \cdot+B)}{\cos A \cdot \cos B}$
70. $\tan A-\tan B=\frac{\sin (A-B)}{\cos A \cdot \cos B}$

TABLE II.
For Converting Metres, Feet, and Chains.

Metres to Feet.		Fett to Metres and Chains.			Chains to Feet.	
Metres.	Feet.	Feet.	Metres.	Chains.	Chains.	Feet.
F	3.28087	1	0.304797	0.0151	0.01	0.66
2	6.56174	2	0.609595	. 0303	. 02	1. 32
3	9.84261	3	0.914392	. 0455	. 03	I. 98
4	13.12348	4	1.219189	. 0606	. 04	2.64
5	16.40435	5	1. 523986	. 0758	. 05	3.30
6	19.68522	6	1.828784	. 0909	. 06	3.96
7	22.96609	7	2.133581	. 1061	. 07	4.62
8	26.24695	8	2.438378	. 1212	. 08	5.28
9	29.52782	9	2.743175	. 1364	.09	5.94
10	32.80869	10	3.047973	. 15 I5	. 10	6.60
20	65.6I739	20	6.09594^{6}	. 3030	. 20	13.20
30	98.42609	30	9.143918	. 4545	. 30	19.80
40	131.2348	40	12.19189	. 6061	. 40	26.40
50	164.0435	50	15.23986	. 7576	. 50	33.00
60	196.8522	60	18.28784	. 9091	. 60	39.60
70	229.6609	70	21.33581	1. 0606	. 70	46.20
80	262.4695	80	24.38378	1.212I	. 80	52.80
90	295.2782	90	27.43175	1. 3636	. 90	59.40
100	328.0869	100	30.47973	1.515I	1	66.00
200	656.1739	100	60.95946	3.0303	2	132
300	984.2609	300	91.43918	4.5455	3	198
400	1312.348	400	121.9189	6.0606	4	264
500	1640.435	500	152.3986	7.5756	5	330
600	1968.522	600	$182.878+$	9.0909	6	396
700	2296.609	700	213.3581 .	10.606	7	462
800	2624.695	800	243.8378	12.121	8	528
900	2952.782	900	274.3175	13.636	9	594
1000	3280.869	1000	304.7973	15.151	10	660
2000	6561.739	2000	609.5946	30.303	20	1320
3000	9842.609	3000	914.3918	45.455	30	1980
4000	13123.48	4000	1219.189	60.606	40	2640
5000	16404.35	5000	1523.986	75.756	50	
6000	19685.22	6000	1828.784	90.909	60	3960
7000	22966.09	7000		106.06		
8000	26246.95	8000	2438.378	121.2I	80	5280
9000	29527.82	9000	2743.175	136.36	90	5940

TABLE III.

Logarithms of Numbers. § 173.

TABLE III.-Continued.

Logarithms of Numbers.

TABLE IIIa.
Logarithms of Sines and Tangents.

	0°				I°				
	Sin.	Cos.	Tan.	Cot.	Sin.	Cos.	Tan.	Cot.	
0^{\prime}		0.0000			8.2419	9.9999	8.2419	1.7581	60^{\prime}
$\underline{1}$	6.4637	. 0000	6.4637	3.5363	. 2490	. 9999	. 249 T	. 7509	59
2	$\begin{array}{r}.7648 \\ \hline .748\end{array}$. 0000	$\begin{array}{r}.7648 \\ \hline .988\end{array}$. 2352	. 256 r	. 9999	.2562	-74.38	58
3	6.9408	. 0000	6.9408	3.0592	. 2630	. 9999	. 2631	. 7369	57
4	7.065^{8}	. 0000	70658	2.9342	. 2699	. 9999	. 2700	. 7300	56
5	. 1627	.0000	. 1627	. 8373	. 2766	. 9999	.2767	. 7233	55
6	. 2419	. 0000	. 2419	. 7581	.2832	-9999	.2833	.7167	54
	. 3088	.0000	. 3088	. 6912	. 2898	. 9999	. 2899	. 7101	53
8	. 3668	. 0000	.3668	.6332	.2962	. 9999	. 2963	. 7037	52
9	.4180	. 0000	. 4180	. 5820	. 3025	. 9999	- 3026	. 6974	5 I
10	. 4637	.0000	. 4637	.5363	- 3088	. 9999	. 3089	. 6918	50
II	-505	. 0000	-5051	. 4949	-3150	-9999	. 3150	. 6850	49
12	. 5429	. 0000	. 5429	. 4571	-3210	- 9999	-3211	. 6789	48
13	. 5777	. 0000	. 5777	. 4223	- 3270	. 9999	. 3271	. 6729	47
14	.6099	.000J	. 6099	-3901	- 3329	. 9999	-3330	. 6670	46
15	. 6398	.000)	. 6398	.3602	. 3388	. 9999	$\cdot 3.389$.66ir	45
16	. 6678	. 0000	. 6678	- 3322	- 3445	-9999	. 3446	. 6554	44
17	. 6942	. 0000	. 6942	- 3058	-3502	. 9999	- 3503	. 6497	43
18	. 7190	. 0000	. 7190	. 2810	- 3558	-9999	- 3559	. 644 r	42
19	.7423	. 0000	. 7425	. 2575	- 3613	-9999	- 3614	. 6386	4 I
20	. 7648	. 0000	.7648	. 2352	. 3668	. 9999	. 3669	. 6331	40
21	. 7859	. 0000	. 7860	. 2140	-3722	- 9999	- 3723	. 6277	39
22	. 806 r	. 0000	. 8062	. 1938	- 3775	. 9999	. 3776	. 6224	38
23	. 8255	. 0000	. 8255	. 1745	- 3828	. 9999	. 3829	. 6171	37
24	. 8439	. 0000	. 8439	. 1561	- 3^{880}	. 9999	-3881	. 6119	36
25	. 8617	. 0000	.8617	. 1383	-3931	- 9999	- 3932	. 6068	35
26	. 8787	. 0000	. 8787	.1213	. 3982	-9999	.3983	. 6017	34
27	. 8951	.0000	. 895 x	. 1049	. 4032	. 9999	. 4033	. 5967	3.3
28	.9109	. 0000	.9109	.0891	. 4082	. 9999	. 4083	. 5917	32
29	.9261	. 0000	. 926 I	. 0739	.413I	. 9999	. 4132	. 5868	31
30	. 9408	.0000	. 9409	.0591	. 4179	. 9999	.4181	. 5819	30
31	. 9551	. 0000	.9751			. 9998		. 5771	
32	. 9689	.0000	. 9689	. 0311	. 4275	. 9998	. 4276	. 5724	28
33	. 9822	.0000	. 9823	.0177	.4322	. 9998	. 4323	. 5677	27
34	7.9952	. 0000	7.9952	2.0048	. 4368	. 9998	. 4370	. 5630	26
35	8.0078	. 0000	8.0078	1.9922	. 4414	. 9998	. 4416	. 5584	25
36	.0200	. 0000	. 0200	. 9800	. 4459	. 9098	. 4461	- 5539	24
37	.0319	. 0000	. 0319	. 968 x	. 4504	. 9998	. 4506	. 5494	23
38	. 0435	. 0000	.0433	. 9565	. 4549	. 9998	. 4551	. 5449	22
39	. 0548	.0000	.0548	. 9452	. 4593	. 9998	. 4595	. 5405	21
40	. 0658	,000	.0658	. 9342	. 4637	. 9998	. 4638	. 5362	20
4 I	. 0765	. 0000	. 0765	. 9235	. 4680	. 9998	.4682	. 5318	19
42	.0870	. 0000	. 0870	. 9130	. 4723	. 9998	. 4725	. 5275	18
43	. 0972	. 0000	. 0972	. 9028	.4765	. 9998	. 4767	. 5233	17
44	. 1072	. 0000	. 1072	. 8928	. 4807	. 9998	.4809	. 5191	16
45	. 1169	. 0000	. 1170	.8830	. 4848	. 9998	.4851	. 5149	15
46	. 1265	. 0000	.1265	. 8735	. 4890	. 9998	. 4892	. 5108	14
47	. 1358	. 0000	. 1359	. 8641	. 4930	. 9998	. 4933	. 5067	13
48 49	-1450	.0000	. 1450	. 8550	. 4971	. 9998	. 4973	. 5027	12
49 50	1539 .1627	.0000	1540 .1627	.8460 .8373	.5011 .5050	. 9998	.5013 .5053	.4987 .4947	110
50	. 1627	.0000	. 1627	. 8373	. 5050	. 9998	. 5053	. 4947	10
51	.1713	.0000	.1713	. 8287	. 5090	. 9998	. 5092	. 4908	8
52	. 1797	0.0000	. 1798	. 8202	. 5129	. 9998	-5131	. 4869	8
53	. 1880	9.9999	. 1880	. 8120	. 5167	. 9998	. 5170	. 4830	7
54 55	. 1961	. 9999	. 1962	. 8038	. 5206	. 9998	.5208	. 4792	6
55	. 2041	. 9999	. 2041	. 7959	. 5243	. 9998	.5246	. 4754	5
56	. 2119	- 9999	. 2120	. 7880	. 5281	. 9998	.5283	.4717	4
57	. 2196	. 9999	. 21296	.7804	.5318	. 9997	. 5321	. 4679	3
58	. 2271	. 9999	. 2272	. 7728	. 5355	. 9997	. 5358	. 4642	2
59 60	8.2346	. 9999	. 2346	. 7654	8.5392	. 9997	$\bigcirc .5394$. 4606	1
60	8.2419	9.9999	8.2419	1.7581	8.5428	9.9997	8.543 r	1.4569	0
	Cos.	Sin.	Cot.	Tan.	Cos.	Sin.	Cot.	Tan.	
							88°		

TABLE IIIA.-Continued.
Logarithms of Sines and Tangents.

TABLE IIIA-Continued.

Logarithms of Sines and Tangents.

dre.						Df.			Arc.	Sin.	Df.	3.	Df.	Tan.	Df.	Cot.	Arc.
5 c	8.9403	14	9.9983	1	8.9420		. 0580	85		9.4130	47	9	3	9.428 I	50		
	. 9545	137	.9982	1	. 9563	138	. 0437	50	10	. 4177	46	.9846	3	9.4281 .4331	50	0.5719 .5669	75 50
20	. 9682	124	. 9981	1	. 9701	I35	. 0299	40	20	.4223	46	.9843	3	. 438 r	49	. 5619	40
30		12	. 998	1	-	1	4		30	69	45	-9839	3	. 4430	49	. 5570	O.
4	8.9945	125	- 9779	2	8.9966	1271	1.0034	20	40	. 4314	45	. 9836	3	- 4479	48	. 5521	0°
50	9.0070	122	- 9977	1	9.0093	12	.9907		50	. 4359	44	. 9832	4	. 4527	48	. 5473	10
6	. 0192	119	. 9976	1	. 0216		- 9784	840	160	. 4403	44	28		. 4575			
	. 03	115	. 9975	2	.0336	117	. 9664	50	10	- 4447	44	. 9825	4	. 4622	47	. 5325	50
20	. 04	113	. 99	1	. 0	114	-9547	40	20	. 4491	42	. 9821	4	. 4669	47	. 533 I	40
3			-9	1			-9433		3	. 453	43	7	3	. 4716	46	. 5284	0
40		10	-9971	2		108	. 9322	20	40	. 4	42	. 9814	4	. 4762	46	. 5238	0
5	. 07	10	- 9	1	. 0	105	. 9214	10	50	. 4618	41	.9810	4	. 4808	45	. 5192	10
7		102	. 9	2	.0891	104		83 ○	170		4 I		4		45	147	30
	. 0	99		2	. 0995	1	5	50	10	. 4700	4 I	. 9802	4		45		50
20	. 10	97	. 9964	1		98		40	20	. 4	40	. 9798	4	. 4943	44	. 5057	-
30		95		2		97			30	. 4	40	-9794	4	. 4987	44	3	30
4	. 1	93		2		94			40	. 48821	40	. 9790	4	. 5031	44		0
50	. 1345	91	-9959	1	. 1385	93			50	. 486 r	39	. 9	4	. 5075	43	. 4925	10
8		89		2		91		820	180	. 4900	39		4	8	43	82	
	. 1525	87	-99	2	. 15	89	. 843 I	50	10	9	38	-9778	4	. 5161	42	39	50
20		85	-9	2		87		40	20	. 4977	38	- 9774	4	- 5203	42	. 4797	40
30		84		2		86			30		37	-9770	5	45	42	. 4755	30
40		82		2	. 1831	84	8	20	$4{ }^{\circ}$. 5052	38	-9765	4	87	42	13	20
50		80		2	.1915	82			50	. 5090	36	. 9761	4	. 5329	41	71	10
9		79		2	. 1	81		81	190	. 5	37	7	5	- 5370	4 I		710
	. 2	78	- 3944	2	. 2	80				3	35	. 9752	4	1	40		50
20		76	- 9942	2	. 21	78		-	20	.5199	36	. 9748	5	5	40	49	-
		75		2		77		30	30	- 5235	35	3	4	91	40	. 4509	30
40	. 2	73		2		76	.7687	20	40	. 5270	36	-9739	5	-5531	40	. 4469	0
50	. 23	73		2		74			50	. 5	35	. 9734	4	-5571	40	. 4429	10
10		71		3		73		800	20	1	34	-9730	5		39		\bigcirc
	. 2468	70		2	.2536	73		50	10	75	34	-9725	4	. 5650	39	. 4350	50
20	. 2538	68		2		71	. 7391	40		. 5409	34	. 9721	5		38	. 4311	40
30		68		3		70			30	43	34		5		39	73	30
40	. 2674	66		3		69		20	40	. 5477	33		5	-5760	38	. 4234	20
50		66		3		68			50	. 55^{10}	33		4	. 5804	$3{ }^{3}$. 4196	10
11		64		2		66		790	21		33		5		37		690
		64	-9919	3	. 2953	67		50	10	. 5576	33	.9697	5	. 5879	38	4121	50
20		63		2		65		40			32		5	. 5917	37	. 4083	
30		61		3		64			30		32		5	- 5954	37		30
40		1		2		63	.685x	20	40	. 5673	31	. 9682	5	. 599 r	37	09	20
50	-3119	60		3		63		10	50	. 5704	32	. 9677	5	. 6028	36	72	10
12		59		3		6r		78			31				${ }_{3} 6$	3936	68 -
10		5		2	- 3336	61	. 6664		10		31	-966	6	. 6100	36	通	50
		57		3		61			20	.5798	30		5		36	84	40
		57		3		59			30		3 I		5		36	828	30
40	. 3410	56	. 9	3	- 3517	59	.6483		40	. 5859	30	. 9651	5	. 6208	35	- 3792	20
50		53		3		58			50	. 5	30		6	43	36	. 3757	10
'3		54		3	- 3634	57		77 ○	23		29			. 6279	35		670
	- 3575	54	. 9884	3	. 3691	57	. 6309	50	10	. 5948	30	. 9635	6	. 6314	34	. 3686	50
	. 3629	5	. 988 x	3	- 3748	56	. 6252	40	20	. 5978	29	.9629	5	. 6348	35	$\cdot 3652$	40
3	-3	52		3	-	55			30		29		6	. 638	34	. 3617	30
40	-	52	. 98	3	. 3859	55	. 6141	20	40	. 6036	29	-9618	5	. 6417	35	. $35^{8} 3$	20
50		51			- 3914	54		10	50		28	.9613	6	. 6452	34	- 3548	10
140	- $3^{8} 37$	50		3		53	. 6032	76	24 O	. 6093	28	. 9607			34	514	66 -
	- 3887	50	. 9	3	. 40	53	. 5979	50	10	.6121	28	. 9602	6	. 6520	33	. 3480	50
	- 3937	49	. 98	3	. 4074	53	. 5926	40	20	.6149	28	. 9596	6	. 6553	34	. 3447	40
30	- 3986		. 985	3		52	. 5873			. 6177	28		6	. 658	33	-3413	30
40	. 4035	48	. 9856	3	. 4178	51	. 5822		40	. 6205	27	.9584	5	. 6620	34	. 3380	20
50	. 4	47	. 98			51	5770		50	.6232	27	. 9579	6	. 6654	33	346	10
15	9.4130	47	9.	3	9.428x	50	0.5719	75 ○	50	0.6259	27	9.9573	7	. 6687	33	0.3313	650
Arc.	Cos.	De.	SL.	D	ot.	.	Tan.			Cos.	Df.	Sin.	Df	Cot.	Df. 1	Tan.	Arc.

TABLE IIIA-Continued.

Logarithms of Sines and Tangents.

Arc.	Sin.	Df.	Cos.	Df.	Tan.	f.	Cot.	Arc.	Ar	Sin	Df.	Cos.	Dr.	Tan.	De.	Cot.	Arc.
OT					9.6687						18				27		-\%
25	9.62	27	9.957	6	9.6	32	-.3280	5	15	. 7	18	9.9134 .9125	9	. 8479	27	- 1521 .15	0
20	. 63.3	27	.9561	6	. 6752	33	. 3248	40	20	. 7622	18	.9116	9	. 8506	27	. 1494	
30	. 6	26	-9555	6	. 6	32	. 3215	30	30	. 7640	17	.9107	9	. 8533	26	. 1467	30
40	.6366	26	. 9549	6	. 6817	33	. 3183	20	40	. 7657	18	. 9098	9	. 8559	27	. 1441	
50	. 6392	26	. 9543	6	. 6850	32	-3150	10	50	.7675	17	. 9089	9	. 8586	27	. 1414	
260	. 6	26	. 9537	7	. 6882	32		64	36 o	. 7692	18	\bigcirc	10		26		
10	. 6	26	. 95	6		32	. 3086	50	10	. 7	17		9	8666	27	61	50
20	. 6470	25	. 9524	6	. 6946	31	. 3054	40	20	. 7727	17	. 906 I	9	. 8666	26	. 1334	40
3		26	. 95	6		32	-3	30	30	- 7744	17	52	10	. 8692	26	. 1308	30
40	. 6521	25	. 95	7	- 7	31	. 2991	20	40		17	-9042	9	. 8718	27	. 1282	
50	. 6546	24	-9505	6	-7	32	. 2960	10	50	. 7778	17	$\cdot 9033$	10	. 8745	26	. 1255	10
27	. 6	25	-9	7	-7	31		63 -	37 O	5	16	23	9	1	26	1229	530
7		25	-9492	6	.7103	3 I	. 2897	50	10	-7811	17	. 9014	10	. 8797	27	.1203	50
20	. 6620	24	. 9486	7	. 7134	$3{ }^{1}$. 2866	40	20	. 7828	16	. 9004	9	. 8824	26	. 1176	
3		24	-9	6	- 7	$3{ }^{1}$		30	30				10	. 8	26		30
4	. 66	24	- 9	7	. 7196	30	. 2804	20	40	.7861	16	. 8985	10	. 8876	26	. 1	
50	. 6692	24	- 9	7	. 7226	31	. 2774	10	50	.7877	16	. 8975	10	. 8902	26	. 1098	10
28 o		24	-9	6		30	. 2743	62	38	. 7	17	5	10	. 8928	26		520
10		23	. 9	7	-7287	30	.2713	50	10	-7910	16	. 8955	10	4	26		50
20	. 6	24	. 9446	7	.7317	3 I	. 2683	40	20	. 7926	15	. 8945	10	O	26	1020	- 40
3		23	-9	7	. 7348	30		30	30	. 7941	16		10	. 9006	26		30
40	. 681	23	. 9	7	. 7378	30	2	20	40	. 7957	16	. 8925	10	32	2 f	. 0968	20
50	. 68	23	. 9425	7	. 7408	30	. 2592		50	. 7973	16	. 8915	10	. 9058	26	. 0942	10
29	. 6	22	-9	7		29	. 2562	6 r	39		15		10	84	26		
10	. 6878	23	. 94	7		30	. 2533	50	10		16		II	10	25		O
20	. 69	22	. 9	7	. 7497	29	. 2503	40	20	. 8020	15	. 8884	10	.9135	26		40
3		23		7		30			30		15		10	61	26		30
40		22	. 9	7	-7556	29	. 2444	20	40	. 8050	16	. 8884	11	.9187	25	. 0813	20
50	. 6958	22	.9383	8	. 7585	29	. 2415	10	50		15	. 8853	10	. 9212	26	. 0788	10
30		22		7		30		60	40 O		15		11	8	26		
	. 7	21	-9	7		29	. 2356	50	10		15	. 8832	II	264	25	36	50
2	- 7	22	. 9	8		28	. 2327	40	20		14	.8821	11	.9289	26		40
30		21	-9	7		29		30	30		15	-	0	3^{15}	26	5	0
40		21	. 9	8	-7	29	. 2270	20	40	. 8140	15	. 8800	II	. 9341	25		20
50	. 7097	21	. 93	7	-7	29	. 2241	10	50	.8r55	14	. 8789	11	. 9366	26		
37		21	.9331	8		28			410		15		II	2	25	. 0608	
10		21	. 9323	8		29	. 2184	50	10	. 8184	14	8767	11	. 9417	26		50
20		21	.9315	7	.7845	28	. 2155	40	20	.8198	15	. 8756	II	. 9443	25	. 0557	40
3		20		8		29		30			14	45	12	. 9468	26	. 0532	30
4		21	. 93	8	. 7902	8	. 2098	20	40	. 8227	14	. 8733	11	. 9494	25	. 0506	
50		20	. 9	8	. 7930	28					14	. 8722	II	.9519	25	. 0481	
32				8		28		58	42		4		12	544	26		48 -
		20		8		28		50	10	. 8269	14	. 868	11	. 9570	25	. 0430	50
	.7282	20		8		28		40		. 8283	14	. 8688	12	. 9595	26	. 0405	
3		20	. 9	8		28			30		14	. 8676	II	21	25		
4	-7		.9252	8	. 8	27	. 1930	20	40	.83II	13	. 8665	12	. 9646	25	. 0354	
50	. 7342	19	. 9244	8	. 8	28	. 1903	10	50	. 8324	14	. 8653	12	. 9671	26	. 0329	
33		19		8		28		570	430		13	. 864 I	2	97	5		
	-7	20	. 9228	9	. 8153	27	. 1847	50	10	. 8351	14	. 8629	11	. 9722	25	. 0278	50
${ }^{2}$		19	.9219	8		28	. 1820	40	20	.8365	13	. 8	12	. 9747	25	. 0253	40
3		9		8		27		30	30	. 837	13	. 8606	12	. 9772	26	28	
40	. 7438	19	.9203	9	. 8		.1765	20	40	. 8391	14	. 8594	12	. 9798	25	. 0202	
50	-7	-	. 9194	8		27	. 1737	10	50	. 8405	13	. 8582	13	.9823	25	. 0177	
340	. 7	18				27	. 1710	56 o	44 O		13		12	848	26		460
	. 7494	19	. 9177	8	.8317	27	. 1683	50		. 843 I	13	. 8557	12	. 9874	25	. 0126	50
	-7513	18		9	. 8344	27	. 1656	40	20		13	. 8545	13	. 9899	25		40
	-7531	19	.93	9	. 8371	27		30	30	. 8	12	. 8532	12		25		
	-7550	18	. 9151	9	. 8398	27	1602	20	40	. 8469	13	. 8520	13	. 9949	26	. 0051	20
50	. 75		. 9142	8		27	15	10	50		13	. 8507		9.9975	25	. 0025	10
350	9.7	18	9.9134	9	9.8452	27	0.1548	55		. 849		9.8495				0.0000	45
Arc.	Cos.	Df	Sin.	D	Cot.	Df	Tan.	Arc	Arc	Cos.	Df.	Sin.	De.	Cot.	Df.	Tan.	Arc.

TABLE IV.
Logarithmic Traverse Table. § 173.

Zero angle at South Point, and increasing to W. $\left(90^{\circ}\right)$, N. (180°), E. $\left(270^{\circ}\right)$.											
Arc rst and 3 d. Quadrants.	Log. sin. (Dep.)	Log. cos. (Lat.)	Arc 2d and 4th. Quadrants.	Arc ist and $3^{\text {d. }}$ Quad- rants.	$\begin{aligned} & \text { Log. } \\ & \sin . \\ & \text { (Dep.) } \end{aligned}$	Log. cos. (Lat.)	Arc 2d and 4th. Quadrants.	Arc rst and 3d. Quadrants.	$\begin{aligned} & \text { Log. } \\ & \text { sin. } \\ & \text { (Dep.) } \end{aligned}$	Log. cos. (Lat.)	Arc 2d and 4th. Quadrants.
$0^{\circ} 180^{\circ}$		10.0000	$180^{\circ} 360^{\circ}$	$1^{\circ} 181{ }^{\circ}$	8.2419	9.9999	$179{ }^{\circ} 359^{\circ}$	$2^{\circ} 182^{\circ}$	8.5428	9.9997	$178{ }^{\circ} 358{ }^{\circ}$
1 2	6.4637 .7648	. .0000	59 58 58		.2490 .2561	.9999 .9999	59 58 58	18 2	.5464 .5500	.9997	59 58 58
3	6.9404	. 0000	57	3	. 2630	-9999	57	3	-5535	-9997	57
4	7.0658	. 00000	- 56	4	. 2699	-9999	56	4	. 5571	-9997	56
- ${ }_{6}$ -	.1627 .2419	. 00000	- ${ }_{54}$ -	5^{--}	. 2768	. 99999	- ${ }_{54}$ -	- 5 -	. 5605	. 99997	-55-
7	. 3088	. 0000	53	7	2898	. 9999	53	7	. 5674	.9997	54 53
8	. 3668	. 0000	52	8	. 2962	. 9999	52		. 5708	. 9999	52
9	.4180	. 0000	51	9	-3025	-9999	51	9	. 5742	-9997	51
10	7.4637	10.0000	50	10	8.3088	9.9999	50	10	8.5\%\%6	9.999\%	50
11	. 505 r	. 0000	49	11	-3150	. 9999	49	11	.58n9	-9997	49
12	. 5429	. 0000	48	12	- 3210	. 9999	48	12	. 5842	-9997	48
13	. 5777	0000 .0000	47	13	-3270	. 9999	47	13	- 5875	.9997	47
14	. 6099	. 0000	- ${ }^{46}$ -	- 14.	-3229		- ${ }^{46}$ -	14 -15	-5907	-9997	- ${ }^{46}$
- 15 -	. 6398	. .0000	-45-	- 15 -	- 33445	. 99999	-45 -	- 15 -	. 593972	.9997	-45 -
17	. 6942	. 0000	13	17	-3502	. 9999	43	17	. 6003	. 9997	43
18	. 7190	. 0000	\therefore	18	-3558	. 9999	42	18	. 6035	-9996	42
19	.7425	. 000	4	19	-3613	-9999	41	19	. 6066	-9996	41
20	7.7648	10.0000	46	20	8.3668	9.9999	40	20	8.609\%	9.9996	40
21	. 7859	. 0000		21	- 3722			21	. 6 r 28		
22	. 80625	. .00000	38 37	22 23	-3775	.9999	38	22	$\begin{array}{r}.6159 \\ .6189 \\ \hline\end{array}$. 99996	38
23 24	.8255	. .0000	37 36	23 24 24		. 99999	37 36	23 24 24	.6189 .6220	. 99996	37 36 3
-25-	.8617	. 0000	- 35 -	- 25 -	-3931	.9999	- 35 -	- 25.	. 6250	. 9996	- 35 -

4
TABLE IV.-Continued.
Zero angle at South Point, and increasing to W. $\left(90^{\circ}\right)$, N. $\left(180^{\circ}\right)$, E. $\left(270^{\circ}\right)$.

Arc rst and 3d. Quadrants.	$\begin{aligned} & \text { Log. } \\ & \text { sin. } \\ & \text { (Dep.) } \end{aligned}$	$\begin{aligned} & \text { Sin. } \\ & \text { Dif. } \\ & \text { for } \\ & \text { for } \end{aligned}$	Log. cos. (Lat.)	Arc 2d and 4th. Quadrants.	Arc ist and 3d. Quadrants.	$\begin{aligned} & \text { Log. } \\ & \text { sin. } \\ & \text { (Dep.) } \end{aligned}$	Sin. Dif. for \mathbf{r}^{\prime}.	Log. cos. (Lat.)	Arc 2 d and 4 th. Quadrants.	Arc ist and 3d. Quadrants.	$\begin{aligned} & \text { Log. } \\ & \text { sin. } \\ & \text { (Dep) } \end{aligned}$	$\begin{aligned} & \text { Sin. } \\ & \text { Dif. } \\ & \text { for } \\ & \mathbf{I}^{\prime} . \end{aligned}$	Log. cos. (Lat.)	Arc 2d and 4th. Quadrants.
$3^{\circ} 183^{\circ}$	8.7188			177°	$17^{\circ} 197^{\circ}$	9.4659		9.9806	163	$31^{\circ} 211^{\circ}$	9.7118		9.9331	${ }^{\circ}$
10'	$.7423$	23	$\text { . } 9993$	50°	10^{\prime}	-4700	4.1	. 9802	50^{\prime}	10^{\prime}	- 71	2.1	. 93323	50^{\prime}
20	-76	21.	-9993	${ }^{40}$		-474I	4.0	-9798			.7160		-9315	40
40	.785	20.2	. 99992	30 20	30	-4781	4.0	-9794	- 30 -	- $30-$.7181	2.0	-9308	30
	. 8251	18.	. 99			. 486 r	4.0	. 97986			. 7222	2.1	.9300	
$4{ }^{\circ} 18$	8.8436		9.99	$176^{\circ} 356^{\circ}$	$18^{\circ} 198{ }^{\circ}$	9.4900	3.9	9.9782	$162^{\circ} 342^{\circ}$	$32^{\circ} 212^{\circ}$	9.7242	2.0	9.9284	328 ${ }^{\circ}$
10	. 8613			50	Io	. 4939	3.9 3.8	-9778	168	10	. 7262 .7282		9.9224 .9276	${ }_{50}$
20	. 878		. 9988	40 -30	${ }^{20}$	- 4977	3.8 3.8	-9	- ${ }^{\circ} \mathrm{O}$	- 20	. 7282	2.0	. 9268	40
30	. 894	15.8		30 20	30	. 5015	3.8 3.7	-9770	30	- 30	. 730	2.0 2.0	.9260	30
40 50		15.2	. 9985	10	50	. 5052	3.8	.9765		40 50	.7322 .7342	2.0	. 9252	20
$5 \cdot 185$	8.9403	14	9.9983	$175{ }^{\circ} 355^{\circ}$	$19^{\circ} 199^{\circ}$	9.5126	3.6	9.9757	$161{ }^{\circ} 341{ }^{\circ}$	$33^{\circ}{ }^{\text {213 }}{ }^{\circ}$	9.7361	1.		7°
10	. 9545		. 9982	50	10	9.51563 .515	3.7	-9752	50	10	9.7381 .7380	1.9	9.9228	3ス
20	. 96			$4{ }^{\circ}$	20	. 5199	3.6	. 97	40	=0	. 74		9219	40
30	$8.988{ }^{\text {8 }}$	1		30	30	. 5235	3.6 3.5	-97	-30	30	- 74		. 9211	- 30
40	8.9945	12	-99	${ }^{20}$	40	. 5270	3.6 3.6	-97		40	. 74		. 9203	20
$6^{\circ} \stackrel{50}{186}$	9.0070	12	9	$174{ }^{\circ}$. 5306	3.6 3.5	-9734	$160^{\circ}{ }^{10} 340^{\circ}$	34	. 74		. 9194	
10	-03II	11	9.9975	1845	10	$\begin{array}{r}\text { 9. } \\ \text {. } 5334 \mathrm{I} \\ \hline\end{array}$	$3 \cdot 4$	9.9730 .9725		34.	9.74 .7	1.8	9.	
20	. 04	It	-9973	40	20	- 5409	3.4 3.4	.9721	40	20	-.7494	1.9	.9169	
30	. 053		. 9972	30	30	- 5443		-9716	30	30	-7531		.9160	- 30
40	. 0648	10.7	-9971	${ }^{20}$	40	- 5477		.9711	20	40	. 75	1.8	.9151	20
7. ${ }^{50} 8{ }^{\prime}$. 0755	10			-	. 5510		. 9706	$159^{\circ} 339{ }^{\circ}$	35°	-75	1.8	.9142	
10		10.2				9.5	$3 \cdot 3$	9.9702	$159^{\circ} 339^{\circ}$			8	9.9134	5°
20	. 106	9.9 9.7		40	20	. 56509	3		40	O		1.8		
30	. 1157	. 7	-9963	30	- 30	. 5641	3.2 3.2	. 96	30	- 30	. 7640	1.	. 9107	
40	. 1252		-996ı	20	40	. 5673	3.2	. 9682	20	40	. 7657	8	.9098	
$8{ }^{-188}$. 1345		995			. 5704	3.1 3.2 3	. 9677			. 7675		. 9089	
$8 \cdot 188$	9.1436	8.9	9.9958	$2^{\circ} 352^{\circ}$	$22^{\circ} 20$	9.57	3.1 3.1	9.9	$158{ }^{\circ} 338{ }^{\circ}$	${ }^{\circ} 21$	9.7692	1.8	9.9080	$144^{\circ} 324{ }^{\circ}$
12	.	8.7	956	50	10	- 5		. 9667	50	10	$\cdot 77$. 9070	50
		8.	-	40	20				40	20	-7727		9061	40
40	.1781		. 9	20			3.1		20				9052	
	. 1863		. 9948	10		. 5889	3.1 3.0	. 9646			. 7778	1.7	9033	
$19^{\circ} 189$	9.1943	8.	9.994		203	9.5919	3.0	9.9640	$15 \%^{\circ} 33$	$37^{\circ} 217^{\circ}$	9.7795	1.7	0.9023	$3^{\circ} 323{ }^{\circ}$

TABLE IV.-Continwed.

 ○

解

TABLE IV.-Continued.
Logarithmic Traverse Table.

Arc rst and 3 d Quadrants.	Log. sin. (Dep.)	Log. cos. (Lat.)	Arc 2d and 4th Quadrants.	Arc rst and $3^{\text {d }}$ Quadrants.	Log. sin. (Dep.)	Log. cos. (Lat.)	Arc 2d and 4th Quadrants.	Arc rst and 3 d Quadrants.	Log. sin. (Dep.)	Log. cos. (Lat.)	Arc 2 d and 4 th Quadrants.
$87^{\circ} 26 \%^{\circ}$	9.9994	8.7188	$93^{\circ} 273{ }^{\circ}$	$88^{\circ} \mathbf{2 6 8}^{\circ}$	$\mathbf{9 . 9 9 9 7}$	8.5428	920 $2^{\circ} 2^{\circ}$	$89^{\circ} \mathbf{2 6 9}{ }^{\circ}$	9.9999	8.2419	$91^{\circ} 271^{\circ}$
1 2	.9994 .9994	.7164 .7140	59 58 58	1 2	.9997 .9997	.5392 .5355	59 58 58	1 2^{\prime}	.9999 .9999	.2346 .2271	59 58 58
3	. 9994	. 7115	57	3	. 9997	. 5318	57	3	. 9999	. 2196	57
4	. 9994	.7090	56	4	. 9998	.5281	56	4	. 9999	. 2119	56
5 -	. 9994	. 7066	- 55 -	5 -	. 9998	. 5243	- 55 -	- 5 -	. 9999	. 2041	- 55 -
6	-9994	-7041	54	6	. 9998	. 5206	54	6	. 9999	. 1961	54
7	. 9994	.7016	53	7	. 9998	. 5167	53	7	9.9999	. 1880	53
8	. 9995	. 6991	52	8	. 9998	. 5129	52	8	10.0000	-1797	52
9	.9995	. 6965	51	9	.ç998	.5090	51	9	. 0000	.1713	51
10	9.9995	8.6940	50	10	9.9998	8.5050	50	10	10.0000	8.1627	50
11	. 9995	. 6914	49	11	. 9998	-5011	49	11	. 0000	. 1539	49
12	. 9995	. 6889	48	12	. 9998	. 4971	48	12	. 0000	. 1450	48
13	. 9995	. 6863	47	13	. 9998	. 4930	47	13	. 0000	. 1358	47
14	. 9995	. 6837	46	14	. 9998	. 4890	46	14	. 0000	. 1265	46
-15 -	. 9995	.6810	- 45 -	- 15 -	. 9998	.4848	- 45 -	- 15 -	. 0000	.1169	- 45 -
16	. 9995	. 6784	44	16	. 9998	.4807	44	16	. 0000	. 1072	44
17	. 9995	. 6758	43	17	. 9998	. 4765	43	17	. 0000	. 0972	43
18	. 9995	. 6731	42	18	. 9998	.4723	42	18	. 0000	. 0870	42
19	. 9995	. 6704	41	19	. 9998	. 4680	41	19	. 0000	.0765	41
20	9.9995	8.667\%	40	20	9.9998	8.4637	40	20	10.0000	8.0658	40
21	. 9995	. 6650	39	21	. 9998	. 4593	39	21	. 0000	. 0548	39
22	. 9995	. 6622	3^{8}	22	. 9998	. 4549	38	22	. 0000	. 0435	38
23	. 9995	. 6595	37	23	. 9998	. 4504	37	23	. 0000	.0319	37
24	. 9996	. 6567	36 -35	24	. 9998	. 4459	36 -35	24 -25	. 0000	8.0200	36 -35
- 25 -	. 9996	. 6539	- 35 -	$-25-$. 9998	. $44{ }^{18}$	- 35 -	-25-	. 0000	8.0078	- 35 -

MMNM	 1	\|	$\begin{array}{ccc} 1 & \stackrel{0}{2} \\ 1 & \stackrel{0}{2} \\ 1 & \circ \\ 0 \end{array}$
			© ! M Mo Mo ํ,
$\begin{array}{r} 8888 \% \\ 8080 \\ 0.80 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			
	1		
$\underset{m M N M O}{\infty}$	\|		
	$\operatorname{mon}^{\infty}{ }^{\infty} \mathrm{m}_{\infty}^{\infty}{ }^{\infty}$ NN ∞		
దN్N No	1		
WM్లM M			awno intmn=
	:o nod	- MñNNNN웅 ర్ర 	H우웅ㅇ
수ำค	 I		

TABLE V.
Horizontal Distances and Elevationg from Stadia Readings. § 204.

Minutes.	0°		$1{ }^{\circ}$		2°		3°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
\bigcirc -	100.00	0.00	99.97	1.74	99.88	3.49	99.73	5.23
2 .	"	0.06	"	1.80	99.87	$3 \cdot 55$	99.72	5.28
4 .	"	0.12	"	1.86	"	3.60	99.71	$5 \cdot 34$
6 .	"	0.17	99.96	1.92	" ${ }^{\prime}$	3.66	"	$5 \cdot 40$
8 .	"	0.23	"	1.98	99.86	3.72	99.70	$5 \cdot 46$
10.	"	0.29	"	2.04	"	3.78	99.69	$5 \cdot 52$
12.	"	0.35	"	2.09	99.85	3.84	"	$5 \cdot 57$
14.	"	0.41	99.95	2.15	"	3.90	99.68	5.63
16.	"	0.47	"	2.21	99.84	3.95	"	5.69
18.	"	0.52	"	2.27	,	4.01	99.67	5.75
20.	"	0.58	"	2.33	99.83	4.07	99.66	5.80
22	"	0.64	99.94	2.38	"	4.13	"	5.86
24.	"	0.70	"	2.44	99.82	4.18	99.65	5.92
26.	99.99	0.76	"	2.50	,	4.24	99.64	5.98
28.	,	0.81	99.93	2.56	99.81	$4 \cdot 30$	99.63	6.04
30.	*	0.87	"	2.62	"	4.36	،	6.09
32 .	"	0.93	"	2.67	99.80	4.42	99.62	6.15
34 .	*	0.99	"	2.73	"	4.48	"	6.21
36.	"	1.05	99.92	2.79	99.79	$4 \cdot 53$	99.61	6.27
3^{8}.	"	1.11	"	2.85	"	4.59	99.60	6.33
40 !	"	1.16	"	2.91	99.78	4.65	99.59	6.38
$42 \cdot$	*	1.22	99.91	${ }^{2} 2.97$	"	4.71	"	6.44
44 . .	99.98	1.28	"	3.02	99.77	4.76	99.58	6.50
46 . .	"	I. 34	99.90	3.08	"	4.82	99.57	6.56
4^{8}.	"	1.40	"	3.14	99.76	4.88	99.56	6.61
50 . .	"	1.45	"	3.20	"	4.94	"	6.67
$52 \cdot$	"	1.51	99.89	3.26	99.75	4.99	99.55	6.73
54.	"	1.57	"	$3 \cdot 3{ }^{\circ}$	99.74	5.05	99.54	6.78
$56 .$.	99.97	1.63	"	$3 \cdot 37$	6	5.11	99.53	6.84
58.	"	I. 69	"99.88	3.43	99.73	5.17	99.52	6.90
60.	"	1.74	"	3.49	"	5.23	99.51	6.96
$c=0.75$	0.75	0.01	0.75	0.02	0.75	0.03	0.75	0.05
$c=1.00$	1.00	0.01	1.00	0.03	1.00	0.04	1.00	0.06
$c=1.25$	125	0.02	1.25	0.03	1.25	0.05	1.25	0.08

[^9]TABLE V.-Continued.
Horizontal Distances and Elevations from Stadia Readings.

Minutes.	4°		5°		6°		7°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Her. Dist.	Diff. Elev.
- . .	99.51	6.96	99.24	8.68	98.91	10.40	98.51	12.10
2.		7.02	99.23	8.74	98.90	10.45	98.50	12.15
4	99.50	7.07	99.22	8.80	98.88	10.51	98.48	12.21
6	99.49	7.13	99.21	8.85	98.87	10.57	98.47	1226
8	99.48	7.19	99.20	8.91	98.86	10.62	98.46	12.32
10	99.47	7.25	99.19	8.97	98.85	10.68	98.44	12.38
12	99.46	7.30	99.18	9.03	98.83	10.74	98.43	12.43
14		7.36	99.17	9.08	98.82	10.79	98.41	12.49
16	99.45	7.42	99.16	9.14	98.81	10.85	98.40	12.55
18	99.44	7.48	99.15	9.20	98.80	10.91	98.39	12.60
20	99.43	7.53	99.14	9.25	98.78	10.96	98.37	12.66
22	99.42	7.59	99.13	9.31	98.77	11.02	98.36	12.72
24	99.41	7.65	99.11	9.37	98.76	11.08	98.34	12.77
26^{*}.	9940	7.71	99.10	9.43	98.74	I1.13	98.33	12.83
28	99.39	7.76	99.09	9.48	98.73	11.19	98.31	12.88
30	99.38	7.82	99.08	9.54	98.72	11.25	98.29	12.94
32	99.38	7.88	99.07	9.60	98.71	11.30	98.28	13.00
34	99.37	7.94	99.06	9.65	98.69	11.36	98.27	13.05
36	99.36	7.99	99.05	9.71	98.68	11.42	98.25	13.11
38	99.35	8.05	99.04	9.77	98.67	11.47	98.24	13.17
40	99.34	8.11	99.03	9.83	98.65	11. 53	98.22	13.22
42	99.33	8.17	99.01	9.88	98.64	11.59	98.20	13.28
44	99.32	8.22	9900	9.94	98.63	11.64	98.19	13.33
$46^{\prime \prime}$.	99.31	8.28	98.99	10.00	98.61.	11.70	98.17	13.39
48 \%.	99.30	8.34	98.98	10.05	98.60	11.76	98.16	13.45
50	99.29	8.40	98.97	10.11	98.58	11.81	98.14	13.50
52	99.28	8.45	98.96	10.17	98.57	11.87	98.13	${ }^{1} 3.56$
54	99.27	8.51	98.94	10.22	98.56	11.93	98.11	${ }^{13} .61$
56	99.26	8.57	98.93	10.28	98.54	11.98	98.10	13.67
58	99.25	8.63	98.92	10.34	98.53	12.94	98.08	13.73
60	99.24	8.68	98.91	10.40	98.51	12.10	98.06	13.78
$c=0.75$	0.75	0.06	0.75	0.07	0.75	0.08	0.74	0.10
$c=1.00$	1.00	0.08	0.99	0.09	0.99	0.11	0.99	0.13
$c=1.25$	1.25	0.10	1. 24	0.11	1.24	0.14	1. 24	0.16

TABLE V.-Continued.
Horizontal Disíances and Elevations from Stadia Readings.

Minutes.	8°		9°		10°		11°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
\bigcirc	98.06	13.78	$97 \cdot 55$	I 5.45	96.98	17.10	96.36	18.73
2	98.05	13.84	$97 \cdot 53$	15.51	96.96	17.16	96.34	18.78
4	98.03	13.89	$97 \cdot 52$	15.56	96.94	17.21	96.32	18.84
6	98.01	I 3.95	$97 \cdot 50$	15.62	96.92	17.26	96.29	18.89
8	98.00	14.01	97.48	I 5.67	96.90	17.32	96.27	18.95
10	97.98	14.06	97.46	15.73	96.88	17.37	96.25	19.00
12	97.97	14.12	97.44	15.78	96.86	17.43	96.23	19.05
14	97.95	14.17	97.43	15.84	96.84	17.48	96.21	19.11
16	97.93	14.23	9741	15.89	96.82	17.54	96.18	19.16
18	97.92	14.28	97.39	15.95	96.80	17.59	96.16	19.21
20	97.90	14.34	$97 \cdot 37$	16.00	96.78	17.65	96.14	19.27
22	97.88	14.40	-97.35	16.06	96.76	17.70	96.12	19.32
24	97.87	14.45	$97 \cdot 33$	16.11	96.74	17.76	96.09	19.38
26	97.85	14.51	97.31	16.17	96.72	17.81	96.07	19.43
28	97.83	14.56	97.29	16.22	96.70	17.86	96.05	19.48
30	97.82	14.62	97.28	. 16.28	96.68	17.92	96.03	19.54
32	97.80	14.67	97.26	16.33	96.66	17.97	96.00	19.59
34.	97.78	14.73	97.24	16.39	96.64	18.03	95.98	19.64
36.	97.76	14.79	97.22	16.44	96.62	18.08	95.96	19.70
38.	97.75	14.84	97.20	16.50	96.60	18.14	95.93	19.75
40	97.73	14.90	97.18	16.55	96.57	18.19	95.91	19.80
42	97.71	14.95	97.16	16.61	96.55	18.24	95.89	19.86
44	97.69	I 5.01	97.14	16.66	96.53	18.30	95.86	19.91
46.	97.68	15.06	97.12	16.72	96.51	18.35	95.84	19.96
48.	97.66	15.12	97.10	16.77	96.49	18.41	95.82	20.02
50	97.64	15.17	97.08	16.83	96.47	18.46	95.79	20.07
52.	97.62	15.23	97.06	16.88	96.45	18.51	95.77	20.12
54.	97.61	15.28	97.04	16.94	96.42	18.57	95.75	20.18
56.	$97 \cdot 59$	15.34	97.02	16.99	96.40	18.62	95.72	20.23
58	97.57	15.40	97.00	17.05	96.38	18.68	95.70	20.28
60	$97 \cdot 55$	15.45	96.98	17.10	96.36	18.73	95.68	20.34
$c=0.75$	0.74	O.I I	0.74	0.12	0.74	0.14	0.73	0.15
$c=1.00$	0.99	0.15	0.99	0.16	0.98	0.18	0.98	0.20
$c=1.25$	1.23	0.18	1.23	0.21	1.23	0.23	1.22	0.25

TABLE V.-Continued.
Horizontal Distances and Elevations from Stadia Readings.

Minutes.	120		13°		$14{ }^{\circ}$		15°	
	Hor.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
- .	95.68	20.34	94.94	21.92	94.15	23.47	93.30	25.00
2.	95.65	20.39	94.91	21.97	94.12	23.52	93.27	25.05
4 .	95.63	20.44	94.89	22.02	94.09	23.58	93.24	25.10
6	95.61	20.50	94.86	22.08	94.07	23.63	93.21	25.15
8	95.58	20.55	94.84	22.13	94.04	23.68	93.18	25.20
10	95.56	20.60	94.8I	22.18	94.01	23.73	93.16	25.25
12	95.53	2066	94.79	22.23	93.98	23.78	93.r3	25.30
14	95.51	20.71	94.76	22.28	93.95	23.83	93.10	25.35
16	95.49	20.76	94.73	22.34	93.93	23.88	93.07	25.40
18	95.46	20.81	94.71	22.39	93.90	23.93	93.04	25.45
20	$95 \cdot 44$	20.87	94.68	22.44	93.87	23.99	93.01	25.50
22	95.41	20.92	94.66	22.49	93.84	24.04	92.98	25.55
24	$95 \cdot 39$	20.97	94.63	22.54	93.81	24.09	92.95	25.60
26	95.36	21.03	94.60	22.60	93.79	24.14	92.92	25.65
28	$95 \cdot 34$	21.08	94.58	22.65	93.76	24.19	92.89	25.70
30	$95 \cdot 32$	21.13	94.55	22.70	93.73	24.24	92.86	25.75
32	95.29	21.18	94.52	22.75	93.70	24.29	92.83	25.80
34	95.27	21.24	94.50	22.80	93.67	24.34	92.80	25.85
36	95.24	21.29	94.47	22.85	93.65	24.39	92.77	25.90
38	95.22	21.34	94.44	22.91	93.62	24.44	92.74	25.95
40	95.19	21.39	94.42	22.96	93.59	24.49	92.71	26.00
42	95.17	21.45	94.3)	23.01	93.56	24.55	92.68	26.05
44	95.14	21.50	94.36	23.06	93.53	24.60	92.65	26.10
46	95.12	21.55	$94 \cdot 34$	23.11	93.50	24.65	92.62	26.15
48	95.09	21.60	94.31	23.16	93.47	24.70	92.59	26.20
50	95.07	21.66	94.28	23.22	93.45	24.75	92.56	26.25
52	95.04	21.71	94.26	23.27	93.42	24.80	92.53	26.30
54	95.02	21.76	94.23	23.32	93.39	24.85	92.49	26.35
56	94.99	21.81	94.20	23.37	93.36	24.90	92.46	26.40
58	94.97	21.87	94.17	23.42	93.33	24.95	92.43	26.45
60	94.94	21.92	94.15	23.47	93.30	25.00	92.40	26.50
$c=0.75$	0.73	0.16	0.73	0.17	0.73	0. 19	0.72	0.20
$c=1.00$	0.98	0.22	0.97	0.23	0.97	0.25	0.96	0.27
$c=1.25$	1.22	0.27	1.21	0.29	1.21	0.31	1.20	0.34

TABLE V.-Continued.
Horizontal Distances and Elevations from Stadia Readings.

Minutes.	16°		17°		18°		19°	
	Hor. Dist.	Diff. Elev.						
-	92.40	26.50	9 I .45	27.96	90.45	29.39	89.40	30.78
2.	92.37	26.55	9 I .42	28.01	90.42	29.44	89.36	30.83
4	92.34	26.59	91.39	28.06	90.38	29.48	89.33	30.87
6	92.31	26.64	${ }^{91} 35$	28.10	90.35	29.53	89.29	30.92
8	92.28	26.69	9 r .32	28.15	90.31	29.58	89.26	30.97
10	92.25	26.74	91.29	28.20	90.28	29.62	89.22	31.01
12	92.22	26.79	91.26	28.25	90.24	29.67	89.18	31.06
14	92.19	26.84	91.22	28.30	90.21	29.72	89.15	31.10
16.	92.15	26.89	91.19	28.34	90.18	29.76	89.11	31.15
18	92.12	26.94	91.16	28.39	90.14	29.81	89.08	31.19
20	92.09	26.99	91.12	28.44	90.11	29.86	89.04	31.24
22	92.06	27.04	91.09	28.49	90.07	29.90	89.00	31.28
24	92.03	27.09	91.06	28.54	90.04	29.95	88.96	31.33
26	92.00	27.13	91.02	28.58	90.00	30.00	88.93	3 I .38
28	91.97	27.18	90.99	28.63	89.97	30.04	88.89	31.42
30	91.93	27.23	90.96	28.68	89.93	30.09	88.86	3 I .47
32	91.90	27.28	90.92	28.73	89.90	30.14	88.82	31.51
34	91.87	27.33	90.89	28.77	89.86	30.19	88.78	31.56
36	91.84	27.38	90.86	28.82	89.83	30.23	88.75	31.60
38.	91.81	27.43	90.82	23.87	89.79	30.28	88.71	31.65
40	9 r .77	27.48	90.79	28.92	89.76	30.32	88.67	31.69
42	9 r .74	27.52	90.76	28.96	89.72	30.37	88.64	3 S .74
44	91.71	27.57	90.72	29.01	89.69	30.41	88.60	31.78
46.	$9 \mathrm{9r} .68$	27.62	90.69	29.06	89.65	30.46	88.56	31.83
48	91.65	27.67	90.66	29.11	89.61	30.51	88.53	31.87
50	91.61	27.72	90.62	29.15	89.58	30.55	88.49	31.92
52	91.58	27.77	90.59	29.20	89.54	30.60	88.45	3 F .96
54.	91. 55	27.81	90.55	29.25	89.51	30.65	88.41	32.01
56.	91.52	27.86	90.52	29.30	89.47	30.69	88.38	32.05
58.	91.48	27.91	90.48	29.34	89.44	30.74	88.34	32.09
60	9 T .45	27.96	90.45	29.39	89.40	30.78	88.30	32.14
$c=0.75$	0.72	0.21	0.72	0.23	0.71	0.24	0.71	0.25
$c=1.00$	0.86	0.28	0.95	0.30	0.95	0.32	0.94	0.33
$c=1.25$	1.20	0.35	1.19	0.38	1.19	0.40	1.18	0.42

TABLE V.-Continued.
Horizontal Distances and Elevations from Stadia Readings.

Minutes.	20°		21°		22°		23°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	$\begin{aligned} & \text { Hor. } \\ & \text { Dist. } \end{aligned}$	Diff. Elev.	Hor. Dist.	Diff. Elev.
\bigcirc	88.30	32.14	87.16	33.46	85.97	34.73	84.73	35.97
2.	88.26	32.18	87.12	33.50	85.93	34.77	84.69	36.01
4.	88.23	32.23	87.08	33.54	85.89	34.82	84.65	36.05
6	88.19	32.27	87.04	33.59	85.85	34.86	84.61	36.09
8	88.15	32.32	87.00	33.63	85.80	34.90	84.57	36.13
10	88.11	32.36	86.96	33.67	85.76	34.94	84.52	36.17
12	88.08	32.41	86.92	33.72	85.72	34.98	84.48	36.21
14	88.04	32.45	86.88	33.76	85.68	35.02	84.44	36.25
16	88.00	32.49	86.84	33.80	85.64	35.07	84.40	36.28
18	87.96	32.54	86.80	33.84	85.60	35.11	84.35	36.33
20	87.93	32.58	86.77	33.89	85.56	35.15	84.3 I	36.37
22	87.89	32.63	86.73	33.93	85.52	35.19	84.27	36.41
24	87.85	32.67	86.69	33.97	85.48	35.23	84.23	36.45
26	87.81	32.72	86.65	34.01	85.44	35.27	84.18	36.49
28	87.77	32.76	86.61	34.06	8540	35.31	84.14	36.53
30	87.74	32.80	86.57	34.10	85.36	$35 \cdot 36$	84.10	36.57
32	87.70	32.85	86.53	34.14	85.31	35.40	84.06	36.61
34	87.66	32.89	86.49	34.18	85.27	$35 \cdot 44$	84.01	36.65
36	87.62	32.93	8645	34.23	85.23	$35 \cdot 48$	83.97	36.69
38 .	87.58	32.98	86.41	34.27	85.19	35.52	83.93	36.73
40	87.54	33.02	86.37	$34 \cdot 3 \mathrm{I}$	85.15	35.56	83.89	36.77
42	87.51	33.07	86.33	$34 \cdot 35$	85.11	35.60	83.84	36.80
44	87.47	33.11	86.29	$34 \cdot 40$	85.07	35.64	83.80	36.84
46	87.43	33. 5	86.25	34.44	85.02	35.68	83.76	36.88
48	87.39	33.20	86.21	34.48	84.98	35:72	83.72	36.92
50	87.35	33.24	86.17	34.52	84.94	35.76	83.67	36.96
52	87.31	33.28	86.13	34.57	84.90	35.80	83.63	37.00
54	87.27	$33 \cdot 33$	86.09	34.61	84.86	35.85	83.59	37.04
56	87.24	33.37	86.05	34.65	84.82	35.89	83.54	37.08
58	87.20	33.41	86.01	34.69	84.77	35.93	83.50	37.12
60	87.16	33.46	85.97	34.73	84.73	35.97	83.46	37.16
$c=0.75$	0.70	0.26	0.70	0.27	0.69	0.29	0.69	0.30
$c=1.00$	0.94	0.35	0.93	0.37	0.02	0.38	0.92	0.40
$c=1.25$	1.17	0.44	1.16	0.46	1.15	0.48	1.15	0.50

TABLE V.-Continued.

Horizontal Distances and Elevations from Stadia Readings.

Minutes.	24°		25°		26°		27°	
	Hor. Dist	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	$\begin{aligned} & \text { Diff. } \\ & \text { Elev } \end{aligned}$	Hor. Dist.	Diff. Elev.
-	83.46	37.16	82.14	38.30	80.78	39.40	79.39	40.45
2.	83.41	37.20	82.09	38.34	80.74	39.44	79.34	40.49
4	83.37	37.23	82.05	38.38	80.69	39.47	79.30	40.52
6	83.33	37.27	82.01	38.41	80.65	39.51	79.25	40.55
8	83.28	37.31	81.96	38.45	80.60	39.54	79.20	40.59
10	83.24	37.35	81.92	38.49	80. 55	39.58	79.15	40.62
12	83.20	37.39	8 8 .87	38.53	80.51	39.61	79.11	40.66
14	83.15	37.43	8 I .83	$3^{8.56}$	80.46	39.65	79.06	40.69
16	83.11	37.47	81.78	38.60	80.41	39.69	79.01	40.72
18	83.07	37.51	81.74	38.64	80.37	39.72	78.96	40.76
20	83.02	37.54	8 8 .69	38.67	80.32	39.76	78.92	40.79
22	82.98	37.58	8 r .65	38.71	80.28	39.79	78.87	40.82
24	82.93	37.62	81.60	38.75	80.23	39.83	78.82	40.86
26	82.89	37.66	81. 56	38.78	80.18	39.86	78.77	40.89
28	82.85	37.70	81.51	38.62	80.14	39.90	78.73	40.92
30	82.80	37.74	81.47	38.86	S0.09	39.93	78.68	40.96
32	82.76	37.77	8 8 .42	38.89	80.04	39.97	78.63	40.99
34	82.72	37.81	8 I .38	38.93	80.00	40.00	78.58	41.02
36	82.67	37.85	81.33	38.97	79.95	40.04	78.54	41.06
38	82.63	37.89	8 r .28	39.00	79.90	40.07	78.49	41.09
40	82.58	37.93	81. 24	39.04	79.86	40.11	78.44	41.12
42	82.54	37.96	81.19	39.08	79.81	40.14	78.39	41.16
44	82.49	38.00	81.15	39.11	79.76	40.18	78.34	41.19
46	82.45	38.04	81.10	39.15	79.72	40.21	78.30	4 r .22
48	82.41	38.08	81.06	39.18	79.67	40.24	78.25	41.26
50	82.36	38.11	8 f .01	39.22	79.62	40.28	78.20	41.29
52.	82.32	38.15	80.97	39.26	79.58	40.31	78.15	41.32
54	82.27	38.19	80.92	39.29	79.53	40.35	78.10	41.35
56.	82.23	38.23	80.87	39.33	79.48	40.38	78.06	41.39
58	82.18	38.26	80.83	39.36	79.44	40.42	78.01	41.42
60	82.14	38.30	80.78	39.40	79.39	40.45	77.96	41.45
$c=0.75$	0.68	0.31	0.68	0.32	0.67	0.33	0.66	0.35
$c=1.00$	0.91	0.41	0.90	0.43	0.89	0.45	0.89	0.46
$c=1.25$	1.14	0.52	1.13	0.54	1.12	0.56	1.11	0.58

TABLE V.-Continued.
Horizontal Distances and Elevations from Stadia Readings.

Minutes.	28°		29°		30°	
	Hor. Dist:	Diff. Elev.	Hor. Dist	Diff. Elev.	Hor. Dist.	Diff. Elev.
\bigcirc	77.96	41.45	76.50	42.40	75.00	$43 \cdot 30$
2	77.91	41.48	76.45	42.43	74.95	43.33
4	77.86	41.52	76.40	42.46	74.90	$43 \cdot 36$
6	77.81	41.55	76.35	42.49	74.85	43.39
8	77.77	41.58	76.30	42.53	74.80	$43 \cdot 42$
10	77.72	41.61	76.25	42.56	74.75	$43 \cdot 45$
12	77.67	41.65	76.20	42.59	74.70	$43 \cdot 47$
14	77.62	4 t . 68	76.15	42.62	74.65	43.50
16	77.57	41.71	76.10	42.65	74.60	43.53
18	77.52	41.74	7 7.05	42.68	74.55	43.56
20	77.48	41.77	76.00	42.71	74.49	43.59
22	77.42	4 I .8 I	75.95	42.74	74.44	43.62
24.	77.38	41.84	75.90	42.77	74.39	43.65
26.	77.33	41.87	75.85	42.80	74.34	43.67
28	77.28	41.90	75.80	42.83	74.29	43.70
30	77.23	41.93	75.75	42.86	74.24	43.73
32 -	77.18	41.97	75.70	42.89	74.19	43.76
34	77.13	42.00	75.65	42.92	74.14	43.79
36.	77.09	42.03	75.60	42.95	74.09	43.82
38 .	77.04	42.06	75.55	42.98	74.04	43.84
40	76.99	42.09	75.50	43.01	73.99	43.87
42	76.94	42.12	75.45	43.04	73.93	43.90
44	76.89	42.15	75.40	43.07	73.88	43.93
46.	76.84	42.19	75.35	43.10	73.83	43.95
48	76.79	42.22	75.30	43.13	73.78	43.98
50	76.74	42.25	75.25	43.16	73.73	44.01
52	76.69	42.28	75.20	43.18	73.68	44.04
54	76.64	42.31	75.15	43.21	73.63	44.07
56	76.59	42.34	75.10	43.24	73.58	44.09
58.	76.55	42.37	75.05	43.27	73.52	44.12
60	76.50	42.40	75.00	$43 \cdot 30$	73.47	44.15
$c=0.75$	0.66	0.36	0.65	0.37	0.65	0.38
$c=1.00$	0.88	0.48	0.87	0.49	0.86	0.51
$c=1.25$	1.10	0.60	1.09	0.62	1.08	0.64

TABLE VI.

Natural Sines and Cosines.

									$4{ }^{\circ}$		
	Sine										
0	. 000	O	. 01745				.05234				60
1	. 000				03548		. 05263	. 9988	- 703	4	59
2	$\left\lvert\, \begin{gathered} .00058 \\ 00087 \end{gathered}\right.$	One	. 018	. 999988	. 03548	. 9993	.05292	. 9986	. 07034	99752	58
	. 00116	One	. 018	. 99	. 03606	. 99935	. 05350	. 998	. 07092		5
	. 00145	One.	. 01891	. 999	. 0363	. 999	. 05379	. 99855	07121	99746	55
6	. 00175	One	. 01920	. 99982	. 03664	. 99	. 05408	. 998	. 07150	99744	54
7	. 00204	On	. 019	. 999881	. 036	. 999332	. 05	99852	. 07179	99	53
8	.002	One	. 019	. 99980	. 037	. 99931	. 05	. 99851	. 07208	99	52
10	. 0										50
11				. 99979		. 99927			5		49
12	. 003	. 999									48
13	. 003	. 99999	. 021	. 99977	. 038	. 99	. 056	. 998	. 07353	997	47
14	. 004	. 99999	. 021	. 99977	. 0389	. 999	. 056	. 998	.	997	46
10	. 00	. 99999	. 02181	. 999976	. 0392	. 999	. 056	. 998	07411		45
16	. 00	. 99999	. 02	. 99976	. 039	. 999	. 05		. 07440	99	44
17	. 00	. 99999	. 02	. 999	. 039	. 9992	. 05	. 99	. 07469	99	43
18	. 005	. 99999	. 02269	. 999	. 40	. 99919	. 05	. 99	. 0 T 4	99719	1
19	. 005	. 9999		. 999	. 40	. 99918			. 075	99716	41
20											40
	. 0				. 041		. 05344	. 99	. 0		39
21		. 9999		. 999	. 041	. 99915	. 05	. 99	. 076		38
23	. 006	. 9999	. 02	. 99971	. 0415	. 99913	. 05		. 176		37
2425	. 0069	. 99998	. 02	. 99970	. 041	. 99912	. 05	. 99	. 07672	997	36
	. 007	.9999\%	. 02472	. 999	42	. 99911	. 05960	. 99822	. 07701	997	35
26	. 007	. 99997		. 9996	. 0424	. 99910	. 05	. 99821	. 07730	99	34
${ }_{27}^{20}$. 00785	. 9999	. 02	. 9996	042	. 99909	. 060		. 07759	.99699	
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	00814	. 99997		. 999				. 99817			
$\begin{aligned} & 28 \\ & 29 \end{aligned}$. 00844	. 99996		. 999		. 99			. 07817		31
30											30
31	. 0		. 0	. 99	. 04391	. 99	. 06134		. 0		29
213331	. 009	. 99	. 026	. 9999	. 04	. 99902	. 061		. 079		28
	. 00960	. 99995	. 027	. 99963	. 044	. 99901		. 99808	. 079		27
	. 00989	. 9999	. 027			. 99900					26
34 35 35	. 01018	. 99		. 999			. 062				25
36	. 01047	. 9939	. 02	. 99961	. 045	. 998	. 06		. 08020		24
373838		. 99		. 99960	. 045						23
	. 01105			. 999				. 997			22
38 39	. 011134	. 99994	. 028%	. 99959	-	. 998			. 08107		2
40	. 0					. 9			. 08136		20
41											
				. 99956	. 047	. 998		. 997	. 08194		18
43	. 01251	. 99992							. 08223		17
$\begin{aligned} & 43 \\ & 44 \end{aligned}$. 01280	. 99992	. 030	. 999	. 047		. 065	. 997	.0822	. 99	16
$\begin{aligned} & 44 \\ & 45 \end{aligned}$. 01309	. 99991	. 0305	. 999	. 047				. 08281		1
$\begin{aligned} & 45 \\ & 46 \end{aligned}$. 01338	. 999991	. 0301						. 08310	-9	14
47	. 01367	. 99991	. 03112	. 99	. 048	. 99			. 083	.996	13
$\begin{aligned} & 47 \\ & 48 \\ & 48 \end{aligned}$. 01396	. 99990	. 03141	. 99951	. 048			. 997	. 0838	9964	1
$\begin{aligned} & 48 \\ & 49 \end{aligned}$		300		-.3950				. 2378	. 08397	996	11
50											10
51	. 01483	. 999	.032		O4			. 99774	. 084		
53	. 01	. 999		. 9994	. 05001	. 998	. 067	. 99772	. 08484	. 996	
		. 9998	. 0328	. 999	. 0503	. 998	. 0	. 99	. 08513	99	
$\begin{aligned} & 53 \\ & 54 \end{aligned}$. 01571	. 393	. 03316	. 99945	. 050	. 9987	. 068	. 99768	. 08542	996	
55	. 1	. 9996	. 03345	. 99944	. 050	. 998		. 99	. 085	. 996	5
	. 01629	. 999	. 03374	. 999	. 051		. 068	. 99764	.	996	
56 58	.	. 999	. 03403	. 99942	. 0514	. 998	. 0688	. 99762	. 0862	. 996	
58	. 0	. 99	. 03432	. 999	. 05	. 998	. 0691		. 0865	99	
59 60	. 01716			. 99940	-	. 998		997		992	1
				. 99939						. 99619	0
	C										
		89°	88°		87°		86°		85°		

TABLE VI.-Continued.

Natural Sines and Cosines.

TABLE VI. - Continued.
Natural Sines and Cosines.

			11				13				,
		Cosin	Sine	Cosin		Cosin	Sine	Cosin	Sine	Cosin	
	1730	. 98481	. 19081	.	20	. 97815	2		92	30	0
	173	. 98476	. 19109		20	. 978		. 97430	220	97023	59
	. 17422		19138	. 88	. 20848	. 97803	. 222552	. 97424	24249	97015	58
	17451	. 98466	. 19167	. 98146	. 20877	. 97797	. 22580	. 97417	24277	8	5
	.17479	98461	. 19195	. 98140	. 20905	. 977791	. 22608	. 97411	24305	$9 \% 001$	56
	17508	. 98455	. 19224	. 98135	. 209	. 9777	. 222637	. 97404	. 24333	96994	55
	17537	${ }^{98145}$. 19252	. 98129	20962	. 9777	. 22665	. 773	. 24362		54
	. 175		. 192881	. 98124	. 21019			. 97391	.243918	96980	53
			. 19338	. 98112	210	. 97760	. 227	. 97378	. 24446		51
10	. 1		. 19366		21076	. 97754	. 2				5
11	. 17680	. 98		. 9810			. 228	. 97365	. 24503	. 96952	49
12	. 17708	. 984	. 19				. 228		. 24531		48
13	. 17737	. 9841	. 19	. 9809	. 21161	. 97735	. 228	. 97	24559		47
14	. 17766	. 98409	. 1948	. 98084	. 21	. 97729	. 22	. 973	. 24587		46
15	. 17794	. 98404	. 19509	. 98079	. 212	. 977	. 22920	. 973	. 24615	96	45
16	. 178	. 98399		. 980		. 97	. 22948	. 973	. 24644		4
17	. 17850	. 98394	. 195	. 98	. 21	. 97	. 2297	. 973	. 24672	. 96909	43
18	. 17880	. 9838	. 195	. 98	. 21	. 97	. 2330	. 973	. 2470	96902	42
19	. 17909	. 98383		. 98056		. 97	. 2303	. 97311			41
20	. 17	. 983									40
21	. 17966	.983	. 196	. 980		. 9	. 23090	. 97	. 21784	. 96880	39
	. 17995	. 983	. 197	. 980	. 21	. 97	. 23118				38
23		. 9838		. 93033	. 214	. 9767	. 23		. 24841		37
24	. 18052	. 9835	. 197	. 98027	. 214	. 97667	. 231		. 24869		36
25	. 18081	. 9835	. 197	. 98021	. 21502	. 97661	. 2320	. 97	24897	968	35
25	. 18109	. 98347		. 98316	. 21530		. 2323	. 9726	. 24925		34
27	. 1813	. 98341	. 19851	. 93510	. 215	. 976	. 23260	. 9725	. 21		33
28	. 1816	. 9833	. 19880	. 93004	. 215	. 9761	. 23288	. 972	. 2498	96	32
29	. 181	. 98331	. 1	. 97993	. 21616		. 23316	. 97244	2501	.96822	
30	. 18	. 9					. 23				30
31	. 182	. 98	. 199	. 979	. 216	. 9%	. 233	. 97230	. 25066		29
82	. 1828	. 983		. 9 T9	. 217	. 97	. 2340				23
33		. 98310	. 2002	. 97975	. 217	. 970	. 234		. 25122		27
34	. 18338	. 93304	. 20051	. 97963	. 217	. 97604	. 23458	. 97210	. 25151	967	25
35	. 18	. 932	. 200	. 9796	. 2178	. 975			. 25179	. 96	25
36		.9320	. 2010	935	. 21814		. 23514	. 97196			24
37	. 1812	. 9828	. 20130	. 9795	. 21813	. 975	. 23542	. 97189	. 25235		23
38					. 218		. 2357	. 97182	. 25263		22
39			. 2		218		. 235	. 97176	25291		21
40	. 18										20
41	. 185	. 9826	. 202		. 219				. 25348		19
≤ 2	. 18567	. 9336	. 20279	. 9792	. 2198	. 9755	. 2368	. 97155	. 25376	. 967	18
	. 18595		. 20307	. 97916	. 22013	. 97547	. 2371	. 97148	. 25404	. 96719	17
44	. 18624	.98250	. 20336	. 97310	. 22011	. 97541		. 97141	. 25432	. 96	15
45	. 18652	. 98245	. 2036	. 9730	. 22070	. 9 т534	. 2376	. 97134	. 2546	. 96	15
46	. 18681	. 93240	. 20393	. 97899	2098	. 975	. 237	. 97127	. 25488		14
	. 18710	. 938231	. 2042	. 97893	2212	. $9 \% 2$. 238	. 97120	. 25516		13
43	. 1873		. 2045	. 9788	. 2215	. 97515	. 2385	. 97113	. 25545		12
43	. 1876	.98223	. 2047	. 97881	. 2218		. 23882	.9r106	. 25573		1
50											10
51	. 1882	. 9821					. 23		. 25629		
52	. 18852	.9820	. 20563	. 97863	.2226	. 9748	. 2396	. 97086	. 256		
	. 18881	. 98201	. 20592	. 9785	. 2229	. 974	. 2399	. 97079	. 2568		7
	- 1810	. 98190	-2020	. 97851	. 2232	. 97476	. 2402	. 9707	25713		
55	. 18938	. 98190	. 20649	. 97845	. 2235	. 97470	. 24051	. 97065	25741		
	. 18967	. 98185	. 20677	. 9783	. 2238		. 24079	. 970	25769	.	4
	. 18999	98179	. 20706		. 2241	. 9745	. 241	. 9705	25798	.	3
58	. 19024	. 98174	. 2073	. 9782	. 2243	. 97450	. 2413	. 970	. 25826		2
59	. 19052	. 98168	. 20763	. 97821	. 2246	. 974	. 24164	. 97	. 25854	. 9660	1
60	81										0
	Cosin	Sine		Sine		Sin			Cosin	Sin	

TABLE VI.-Continued.
Natural Sines and Cosines.

			16°								
	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine		
0	. 258		- 2	. 961	. 292	95	2	. 95106	32557	2	60
2	. 25910	96	. 27	. 96	. 292	95	. 30929	. 95097	34	. 94542	59
	. 25938	. 96578	. 27620	. 966110	. 292938	. 95613	. 30957	. 95088	${ }^{3} 32639$. 94533	58
4	. 25994	. 965	. 27676	. 96094	. 29348	. 95596	. 31012	. 95070	. $3266{ }^{7}$	94	
5	. 26022	. 96555	. 2770	. 9608	. 29376	. 95588	. 31040	. 95061	. 32694	94504	55
	. 26050	. 96547	. 27731	. 96078	. 29404	. 955579	. 31068	. 95052	. 32722	94495	54
6	. 26079	. 96540	. 27759	-96070	. 29432	. $955 \% 1$. 31095	. 95043	. 32749	55	53
$\begin{aligned} & 7 \\ & 8 \end{aligned}$. 26107	965	. 2	. 960	. 294	. 955562	. 31123	. 95033	. 32777	. 94476	52
$\begin{aligned} & 8 \\ & 9 \end{aligned}$. 2613163	96:5	. 27	. 966	. 294857		. 311151		. 322832		51
10	. 2019				. 29543	. 95538	. 31		. 32859		49
	. 26219	965	. 27899	. 96029	. 29571	. 955	. 31	. 94997	. 32887		48
12	. 26247	. $96 \% 94$. 2 \%	. 96021	. 29599	. 95519	. 31261	94988	. 32914	94	47
	. 26275	$9648{ }^{\text {b }}$. 279	. 96013	. 296	. 95511	.	94979	. 32942		46
1	. 26303	. 96479	. 27983	. 96005	. 29654	. 95502	. 31316	. 94970	. 32969	94409	45
16	. 26331	. 96471	. 2801	. 95997	. 29682	. 95493	. 31344	. 94961	. 32997	94399	44
17	. 26359	. 9646	. 28039	. 95989	. 29710	. 9548	. 31	. 94952	. 33024		43
18	. 26387	. 96456	. 28067	. 95981	. 27737	. 95476	. 31399	. 94943	. 33051	30	42
19	. 26415	. 9644	. 2809	. 95972		. 95467			. 33079	94370	41
20	. 26443	. 96440	8123								40
21	. 26471	. 964	. 28150	. 959	. 298	. 95450	. 31	94915	. 33134		39
	. 26500	. 9642	. 281	. 959	. 298	. 95441	. 31	94906	. 33161		38
23	. 26528	. 96417	. 28206	. 95940	. 29876	. 95433	. 31537	. 94897	. 33189		
24	. 26556	. 96410	. 28834	. 05931	. 29904	. 95424	. 315	. 94888	. 33216		
	. 26584	. 96402	. 28262	. 95923	. 299	. 05415	. 31	. 948	. 33244	94313	35
26	. 26612	. 9639	. 28290	. 959	. 299	. 954	. 31620	. 94869	. 33271	. 94303	34
	. 26640	. 96386	. 28318	. 959	. 29987	. 953	. 31648	. 94860	. 33238	. 94	33
28	. 26668	. 9637	. 23346	. 958	. 30015	. 953		. 94851			
29	. 26696	. 96371	. 28374	. 958	. 30043	. 95380	. 31	. 94842	35	94274	31
30	. 26724	. 96	8402								
313232	. 26752	. 96	. 28429	. 95	. 300		. 31	. 94823	. 33408	94254	29
	. 26780	. 96347	. 28457	. 958	. 30126	. 95354	. 31	. 94814	. 33436	. 94245	
32	. 26808	. 963	. 28	. 9585	. 30154	. 953	. 31813	. 94805			27
33	. 26836	. 96332	. 23513	. 958	. 30182		. 31841		. 33490	. 94	26
34	. 26864	. 96334	. 28541	. 95841	. 30209	. 95338	. 318	. 94786	. 33518	. 94215	25
35 36	. 26892	. 96316	. 28569	. 958	. 30237	. 95319	. 818	. 94777	. 33545	94206	24
36	. 26920	. 96308	. 28597	. 95824	. 302	. 95310			. 33573	. 94196	23
38	. 26948	. 96301		. 958816		. 95301	. 31951		33600		2
40	${ }^{.26976}$. 958		. 95293		. 94749	327	94176	21
41	. 2										19
42	. 27060	. 962	. 28	. 957	. 304	. 95	. 3206	. $94 \sim 21$. 33710	94147	18
43	. 27088	. 96261	. 28764	. 9577	. 30431	. 95257	. 3208	. 94712	38737		17
4145	. 27116	. 96253	. 28792	. 95766	. 30459	. 95248	. 32116	. 94702	. 33764	. 94127	16
	. 27144	. 962	. 28820	. 95757	. 30486	. 95240	. 32144	. 94693	. 33192	. 94118	15
45	. $271 \% 2$. 9623	. 28847	. 95749	. 30514	. 952	. 32171	. 94684	. 33819		14
46	. 27200	. 96330	. 28875	. 95740	. 30542	. 95222	. 32199	. 94674	. 33846	94098	13
48	. 27228	. 962	. 28903	. 95732	. 30570	. 95213	. 3222	. 94665	. 33874	. 94	12
49	. 27256	96214	28931	. 95724	. 30597	. 95204	. 32254	. 94656	83901	94018	11
50	. $2 \tau 284$		28959	. 95715			. 3228		33929		10
51	. 27312	. 96198	. 28987	. 9570	. 30653	. 95186	. 32309	. 94637	. 33956	94058	
52	. 27340	. 96190	. 29015	. 9563	. 30680	. 95177	. 2233	. 94627	. 33983	94049	
5	. 27368	. 96182	. 29042	. 95690	. 30708	95168	. 32364	. 94618	. 34011	. 9403	7
54	. 27396	. 96174	. 2907	. 9568	. 30736	. 95159	. 32392	. 94609	. 34038	94029	
55	. 27424	. 9616	. 29098	. 9567	. 30763	. 95150	. 32419	. 94599	. 34065	. 94019	
56	. 27452	. 96158	. 29126	. 9566	.30791	. 95142	. 32447	. 94590	. 34093	94009	4
5	. 27480	. 96150	. 2915	. 95656	. 30819	95133	. 32474	. 93580	. 34120	,	3
58	. 27508	. 96142	. 29182	. 95647	. 30846	95124	. 32502	. 94571	34147	939	2
59	. 27536	. 96	09	. 9563	. 30874	. 9511	. 32529	. 945	34175	93979	1
60					. 30902		3		02	. 93969	0
	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Si	Cosin	Sine	

TABLE VI.-Continued.
Natural Sines and Cosines.

TABLE VI.-Continued.
Natural Sines and Cosines.

	25°			26°				28°		29°		
		Sine	Cos	Sine	Cos	Sin	Cosin	Sin	Co	Sine	Cosin	
		. 42262	. 90631	. 43837	. 898879	. 45399	. 89101	. 46947	. 8	. 48481	2	60
		. 4228	. 90618	. 43863	. 89867	. 454	. 89087	. 46973	. 88281	. 48506	87448	59
		. 42315	. 90606	. 43889	. 898854	. 4545477	. 893074	. 469992	. 882687	. 48532	87434 87420	58
4		. 423367	. 90582	. 43942	. 89888	. 45503	. 89048	. 47050	. 88240	. 48583	87406	56
		. 42394	. 90569	. 43968	. 89816	. 45529	. 89035	. 47076	. 88226	. 48608	87391	55
6		. 42420	. 90557	. 43994	. 89803	. 45554	. 89021	. 47101	. 88213	. 48634	. 87377	54
		. 42446	. 90545	. 44020	. 89790	. 45550	. 89008	. 47127	. 88199	. 48659	. 87363	53
		. 42473	. 90532	. 44046	. 89777	. 45606	. 889985	. 47153	. 888185	. 486810	. 873349	52
10		. 42425	. 90550	. $440 \% 2$.89764	. 4563658	. 8889818	. 4777204	.88172	$\begin{array}{\|l\|} \hline .48710 \\ .48735 \end{array}$	$.87335$	51
11		. 42552	. 90	. 44124	. 89739	. 45684	. 88955	. 47229	. 88144	. 48761	. 87306	4.)
2		. 42578	. 90483	. 44151	. 89726	. 45710	. 88942	. 47255	. 88130	. 48786	87292	48
13		. 42604	. 90470	. 44177	. 89713	.45\%36	. 88928	. 47281	. 88117	. 48811	. 87278	47
4		. 42631	. 90458	. 44203	. 89700	. 45762	. 88915	. 47306	. 88103	. 48837	. 87264	46
15		. 42657	. 90446	. 44229	. 89687	. 45787	. 88902	. 47332	. 88089	. 48862	. 87250	45
16		. 42683	. 90433	. 44255	. 89674	. 45813	. 88888	. 47358	. 88075	. 48888	. 87235	44
17		. 4270	. 90421	. 44281	. 89662	. 45839	.88875	. 47383	. 88062	. 48913	. 87221	43
18		. 42736	. 90408	. 44307	. 89649	. 45865	. 88882	. 47409	. 88048	. 48938	. 87207	42
19		. 4276	. 90393	. 44333	. 89636	. 45891	. 88848	. 47434	. 88034	. 48964	. 87193	41
20		.4878	. 90383	. 44359	. 89623	. 45917	. 88835	. 47460	. 88020	. 48989	871	40
21		. 42815	. 90371	. 41385	. 89610	. 45942	. 88822	. 47486	. 88006	. 49014	. 87164	39
22		. 42841	. 90358	. 44411	. 89597	. 45968	. 8888	. 47511	. 87993	. 49040	. 87150	38
3		. 42867	. 90346	. 44437	. 89584	. 45994	. 88795	. 47537	. 87979	. 49065	. 87136	37
24		. 42894	. 90334	. 44464	.89571	. 46020	. 88782	. 47562	. 87965	. 49090	. 87121	36
25		. 42920	. 90321	. 44490	. 89558	. 46046	. 88768	. 47588	. 87951	. 49116	. 87107	35
26		. 42946	. 90309	. 44516	. 89545	. 46072	. 88755	. 47614	. 87937	. 49141	. 87093	34
27		. 42972	. 90236	. 415	. 89533	. 46097	. 88741	. 47639	. 87923	. 49166	. 87079	33
9		. 42999	. 90234	. 44568	. 89519	. 46123	.88728	. 47665	. 87909	. 49192	. 87064	32
29		. 43025	.97271	. 44594	. 89506	. 46149	.88715	. 47690	. 87896	. 49217	. 87050	31
30		. 43051	. 90259	. 44620	. 89493	. 46175	. 88701	. 47716		. 4924	. 87036	30
31		. 43077	. 90246	. 44646	. 89480	. 46201	. 88688	. 47741	. 87868	. 49268	. 87021	29
32		. 43104	. 90233	. 41672	. 89467	.46923	. 880674	. 47767	. 87854	. 49293	. 87007	28
33		. 43130	.90221	. 44698	. 89454	. 46252	. 88661	. 47793	. 87840	. 49318	. 86993	27
34		. 43156	. 90208	. 44724	. 89441	.46278	. 88647	. 47818	. 87826	. 49344	. 86978	26
35		. 43182	. 90196	. 44750	. 89128	. 46304	. 88634	. 47844	. 87812	. 49369	. 86964	25
36		. 43209	. 90183	. 44776	. 89415	. 46330	. 88620	. 47869	. 87798	. 49394	. 86949	24
37		. 43235	. 90171	. 44802	. 89402	. 46355	. 88607	. 47895	. 87784	. 49419	. 86935	23
38		. 43221	. 90158	. 44828	. 893389	. 46381	. 88593	. 47920	. 87777	. 49445	. 86921	21
39		. 432	. 90146	. 44854	. 89376	. 40407	. 88580	. 47946	. 87756	. 49470	. 86906	21
40		. 4	. 90133		. 89363	. 46433	6	. 47971	. 87	5	. 86892	20
41		. 43340	. 90120	. 44906	. 89350	. 46458	. 88553	. 47997	. 87729	. 49521	. 86878	19
42		. 43366	. 90108		. 893337	. 46484	. 88539	. 48022	. 87715	. 49546	. 86883	18
43		. 43392	. 90095	. 44958	. 89334	. 46510	. 885276	. 48048	. 87701	. 49571	. 86849	17
44		. 43418	. 900082	. 44984	. 89311	. 46536	. 88512	. 48073	. 87687	. 49596	. 868834	16
45		. 43445	. 90070	. 45010	.89298	. 46561	. 88499	. 48099	.87673	. 49622	. 86820	15
46		. 43471	. 90057	. 45036	. 89285	. 46587	. 88485	. 48124	. 87659	. 49×47	. 86805	14
47		. 43497	. 90045	. 45062	.89272	. 46613	. 884772	. 48150	. 87645	. 49672	. 86791	13
48		. 43523	. 90032	. 45088	. 89259	. 46639	. 88458	. 48175	. 87631	. 49697	.86777	12
49		. 43549	. 90019	. 45114	. 89245	. 46664	. 88445	. 48201	. 87617	. 49723	. 86762	11
50		. 435	. 900	. 45140	.89232	. 46690	. 88431	. 48226	. 87603	$.49748$. 86748	10
51		. 43602	. 89994	. 45166	. 89219	. 46716	. 88417	. 48252	. 87589	. 49773	. 86733	9
2		. 43628	. 89981	. 15192	. 89206	. 40742	. 88404	. 48227	. 87575	. 49798	. 86719	8
		. 43654	. 89968	. 45218	. 89193	. 46767	. 88390	. 48303	. 87561	. 49824	. 86704	7
		. 43680	. 89956	. 45243	. 89180	. 46793	. 883377	. 48328	. 87546	. 49849	. 86690	6
55		. 43706	. 89943	. 45269	. 89167	. 46819	. 88363	. 48354	. 87532	. 49874	. 86675	5
		. 43733	. 89930	. 45295	. 89153	. 46844	. 88349	. 48379	. 87518	. 49899	. 86661	4
		. 43759	. 89918	. 45321	. 89140	. 46870	. 883336	. 48405	. 87504	. 49924	86646	3
		. 43785	. 89905	. 45347	. 89127	. 46896	. 88322	. 48430	. 87490	. 49950	86632	2
50		. 43811	. 89892	453\%3	. 89114	. 46921	. 888308	. 48456	87476	. 49975	86617	1
		. 4	. 8	. 45399	. 89	. 46947	. 8	. 48481	. 8		. 86603	0
		Co	ine	Cosi	Sine	si	Sin		Sin	osi	SI	

TABLE VI.-Continued.
Natural Sines and Cosines.

TABLE VI.-Continued.
Natural Sines and Cosines.

	35°		36°				38°		39°		
	Sine	Cosin	Sine		Sine		Sine	Cosin	Sine		
0	. 573588	- 81	. 58		. 60	. 798	61566	.78801	62932	T	60
1	. 57381	. 81899			. 60205	. 798946	. 61589	. 78783	. 622955	. 77696	59
2	. 57405	. 81888	. 588826		. 60228	.79829	61612	. 788765	. 632977	.776\%8	58
3											7
4	. 57453	. 81848	. 588	. 808	. 60274	. 79793	. 61658	. 78729	. 63022	. 77641	56
5	. 57477	. 81832	. 58896	. 80816	. 60298	79776	. 61681	78711	. 63045	. 77623	
6	. 57501	. 81815	. 58920	. 80799	. 60321	. 7975	. 61704	78694	. 63068	. 77605	
7	. 57524	. 81798	. 58943	.80782	. 60344	. 79741	. 61726	786\%6	. 63000	. 77586	3
8	. 57548	. 81782		. 80765	. 60367	.79723	. 61749	. 78658	. 63113		
10	. 5775	. 81765	. 58990	. 807	. 60	7970	. 61772	. 78640	. 63135	. 77550	51
10	. 5										50
11	. 5761	. 817	. 590	. 80	. 60	79671	. 61818	. 78604	. 63180	. 77513	40
12	. 57643	. 8171	. 59061	. 80696	. 60460	79653	. 61841	. 78586	. 63203	. 77494	
13	. 57667	. 81698	. 59084	. 80679	. 60483	79635	. 61864	. 78568	. 63225	. 77476	4
14	. 57691	. 81681	. 59108	. 806	. 60506	\%96	. 61887	. 785	. 63248	.77458	46
15	. 57715	. 81664	. 59131	. 80644	. 60529	79600	. 61909	. 78533	. 63271	. 77439	45
16	. 57738	. 81647	. 59154	. 80627	. 60553	79583	. 61932	. 78514	. 63293	. 77421	44
17	. 57762	. 81631	. 59178	. 80610	. 60576	79565	. 61955	78196	. 63316	. 77402	43
18	. 57786	. 81614	. 59201	. 80593	. 60599	. 7954	. 61978	.78478	. 6333	. 77384	42
19	. 57810	. 81597	.5922	.805\%6	. 60622	. 79530	.6200	78460	. 63361		
20	. 57			. 80		. 79				. 77347	40
21	. 5785	. 81563	. 59272	. 80541	. 60668	79494	. 62046	. 78424	. 63406	. 77329	39
22	. 57881	. 8154	. 5929	. 80524	. 60691	.794\%	. 62069	. 78405	. 63428	. 77310	
23	. 57904	. 81530	. 59318	. 80507	. 60714	79459	. 62092	. 7838	. 63451	. 77292	
24	. 57928	. 81513	. 59342	. 80489	. 60738	. 9441	. 62115	. 78369	. 63473	. 77273	6
25	. 57959	. 81496	. 59365	.80472	. 60761	79424	. 62138	. 78351	. 6349	. 772	35
23	. 579	. 81479	. 59389	. 804	. 60784	. 79406	. 62160	.7833	. 63518	. 77236	
27	. 579	. 81462	. 59412	. 80438	. 60807	79388	. 62183	. 78315	. 63540	. 77218	33
28	. 58	. 81445	. 59436	. 804	. 608	. 7937	. 62206	. 78297	. 63563	. 77199	
29	. 5804	. 81428	. 59459	. 80403	60853	. 79353	. 62229	. 78279	. 6358	. 77181	1
30	. 58	. 81412	. 59482	. 803	. 60876	79335	. 62251	r8261	. 636	. 77162	30
31	. 58094	. 81395	. 59	. 803	. 60	79318	. 62274	. 78243	. 63630	. 77144	29
3	. 58118	. 81378	. 59529	. 80351	. 60922	79300	. 62297	. 78225	. 63653	.77125	28
33	. 58141	. 81361	. 59552	. 80334	. 60945	. 9282	. 62320	. 78206	. 63675	. 77107	27
34	. 58	. 81344	. 59576	. 80316	. 609	. 79264	. 62342	. 78188	. 6369		6
35	. 58189	. 81327	. 59599	. 80299	. 60991	. 79247	. 62365	. 78170	. 63720	. 77070	25
36	. 58212		.59622	.80282	. 61015	79229	. 62388	. 78152	. 63742	. 77051	24
37	. 582	. 81293	. 59646	. 80264		79211	. 62411	. 78134	6376	. 77033	23
38	. 58	. 81276	. 59669	. 80247	. 61061	79193	. 62433	. 78116	6378	. 77014	22
39	. 58883	.81259	. 59693	. 80230	. 6	. 79176	. 62456	. 78098	. 63810	. 76996	21
40	. 58307	. 81242								. 76	20
41	. 5833	.81225							. 63854	76959	19
42	. 58354	. 81208	. 59763	. 80178	. 61153	. 79122	. 62524	.78043	. 63877		18
43	. 58378	. 81191	. 597	. 80160	. 61176	. 79105	. 62547	. 78025	. 63899	. 76921	17
44	. 58401	. 81174	. 59809	. 80143	. 61199	.79C87	.625\%0	. 78007	. 63922	. 76903	16
45	. 58125	. 81157		. 80125	. 61222	79069	. 62592	. 77988	. 63944	-	15
46	. 58449	. 81140	. 59856	. 80108	. 61245	79051	. 62615	. 77970	. 63966	. 76866	14
47	. 58472	. 81123	. 59879	. 80091	. 61268	. 79033	. 62638	. 77952	. 63989	. 76847	13
48	. 58496	. 81106		. 800%	. 61291	. 79016	. 62660	. 77934	64611		11
49	. 58519	. 81089	. 59926	. 80056	. 61314	. 78998	. 62683	. 77916	64033	76810	11
50				. 80038						. 76%	10
51				. 8002	. 61360	. 78962	. 62728	. 77879	. $640 \div 8$. 767	
52	. 58590	. 81038	. 59995	. 80003	. 61383	. 78944	. 62751	. 77861	. 64100	. 76%	
53	. 58614	. 81021	. 60019	. 79986	. 61406	. 78926	. 62774	. 77843	. 64123	. 76735	
54	. 58	. 81004	. 60042	. 79968	. 61429	. 78908	. 62796	. 77824	. 64145	.76\%17	
55	. 58661	. 80987	. 60065	. 99951	. 61451	. 78891	. 62819	. 77806	. 64167	7669	
56	. 58888	. 80970	. 60089	. 79934	. 61474	. 78873	. 62842	. 77788	. 64190	. 6667	
5	. 587708	. 80953	. 60112	. 79916	. 61497	. 7885	. 62864	. 77769	. 64212	.6661	
58	. 58731	. 80936	. 60135	.79899	. 61520	. 78837	. 6288	. 77751	. 64234	. 76642	
59	. 587755	. 8091	. 60158	. 798	. 61543	. 78	. 62909	. 7773	-	76623	
60		-		. 79864		T	6293	. 77715	. 64279	76604	0
		Sine		Sine					Cos	Sine	

TABLE VI.-Continued.

Natural Sines and Cosines.

TABLE VII.

natural Tangents and Cotangents.

	0°		$1{ }^{\circ}$		$2{ }^{\circ}$		$3{ }^{\circ}$		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
	. 00000	Infinite.	. 01746	57.2900	. 03492	28.6363	. 05241	19.0811	$\overline{60}$
	. 00029	3437.75	. 01775	56.3506	. 03551	28.3994	. 05270	18.9755	59
	. 00058	1718.87	. 01804	55.4415	. 03550	28.1664	. 05299	18.8711	58
	. 00087	1145.92	. 01833	54.5613	. 03579	27.9372	. 05328	18.7678	57
	. 00116	859.436	. 01862	53.7086	. 03609	27.7117	. 05357	18.6656	56
	. 00145	687.549	. 01891	52.8821	. 03638	27.4899	. 05387	18.5645	55
6	. 00175	572.957	. 01920	52.0807	. 036667	${ }_{27}^{27.2715}$. 05416	18.4645	54
	.00204 .00233	491.106 429.718	. 01949	51.3032 50.5485	. 03696	27.0566 26.8450	. 05445	18.3655 18.2677	53
	. 00262	381.971	. 02007	49.8157	.03\%54	26.6367	. 05503	18.1708	51
10	. 00291	343.774	. 02036	49.1039	. 03783	26.4316	. 05533	18.0750	50
1	. 00320	312.521	. 02066	48.4121	. 03812	26.2296	. 05562	17.9802	49
2	. 00349	286.478	. 02095	47.7395	. 03842	26.0307	. 05591	17.8863	48
3	. 00378	264.441	. 02124	47.0853	. 03871	25.8348	. 05620	17.7934	47
4	. 00407	245.552	. 02153	46.4489	. 03900	25.6418	. 05649	17.7015	46
15	. 00433	229.182	. 02182	45.8294	. 03929	25.4517	. 05678	17.6106	45
6	. 00465	214.858	. 02211	45.2261	. 03958	25.2644	. 05708	17.5205	44
17	. 00495	202.219	. 02240	44.6386	. 03987	25.0798	.05737	17.4314	43
	. 00524	190.984	. 02269	44.0661	. 04016	24.8978	. 05766	17.3432	42
9	. 00553	180.932	. 02298	43.5081	. 04046	24.7185	.05795	17.2558	41
20	. 00582	171.885	. 02328	42.9641	. 04075	24.5418	. 05824	17.1693	40
2122232425262627282930	. 00611	163.700	. 02357	42.4335	. 04104	24.3675	. 05854	17.0837	39
	. 00640	156.259	. 02386	41.9158	. 04133	24.1957	. 05883	16.9990	
	. 00669	149.465	.02415	41.4106	. 04162	24.0263	. 05912	16.9150	37
	. 00698	143.237	. 02144	$40.91 \% 4$. 04191	23.8593	. 05941	16.8319	36
	. 00727	137.507	. 02473	40.4358	. 04220	23.6945	. 05970	16.7496	35
	. 00756	132.219	.02502	39.9655	. 04250	23.5321	. 05999	16.6681	34
	. 00785	127.321	. 02531	39.5059	. 04279	23.3718	. 06029	16.5874	33
	. 00815	122.754	. 02560	39.0568	. 04308	23.2137	. 06058	16.5075	32
	. 00844	118.540	. 02589	38.6177	. 01337	23.0577	. 06087	16.4283	31
	. 00873	114.589	. 02619	38.1885	. 0436	22.9038	. 06116	16.3499	30
31	. 00902	110.892	. 02648	37.7686	. 04395	22.7519	. 06145	16.272	29
32	. 00931	107.426	. 02677	37.3579	. 04424	22.6020	. 06175	16.1952	28
	. 00960	104.171	. 03706	36.9560	. 04454	22.4541	. 06204	16.1190	27
	. 00989	101.107	.02\%35	36.5627	. 04483	22.3081	. 06233	16.0435	26
34 35	. 01018	98.2179	.02\%64	36.176	. 04512	22.1640	. 06262	15.9687	25
${ }_{37}^{36}$. 01047	95.4895	.02793	35.8006	. 04541	22.0217	. 06291	15.8945	24
	. 01076	92.9085	. 02822	35.4313	. 04570	21.8813	. 06321	15.8211	23
	. 01105	90.4633	. 02851	35.0695	. 04599	21.7426	. 06350	15.7483	22
$\left\|\begin{array}{l} 38 \\ 39 \\ 40 \end{array}\right\|$. 01135	88.1436	. 02881	34.7151	. 04628	21.6056	. 06379	15.6762	21
	. 01164	85.9398	. 02910	34.36\%8	. 04658	21.4704	. 06408	15.6048	20
41	. 01193	83.8435	. 02939	34.0273	. 04687	21.3369	. 06437	15.5340	19
4	. 01222	81.8470	. 02963	33.6935	. 04716	21.2049	. 06467	15.4638	18
43	. 01251	79.9434	.02997	33.3662	. 04745	21.0747	. 06496	15.3943	17
44	. 01280	78.1263	. 03026	33.0452	. 04774	20.9460	. 06535	15.3254	16
45	. 01309	76.3900	. 03055	32.7303	. 04803	20.8188	. 06554	15.2571	15
	.C1338	74.7292	. 03084	32.4213	. 04833	20.6932	. 06584	15.1893	14
7	. 01367	73.1390	. 03114	32.1181	. 04862	20.5691	. 06613	15.1222	13
48	. 01396	71.6151	. 03143	31.8205	. 04891	20.4465	. 06642	15.0557	12
	. 01425	70.1533	. 03172	31.5284	. 04920	20.3253	. 06671	14.9898	11
50	. 01455	68.7501	. 03201	31.2416	. 04949	20.2056	. 06700	14.9244	10
5 5	. 01484	67.4019	. 03230	30.9599	. 04978	20.0872	.06730	14.8596	
	. 01513	66.1055	. 03259	30.6833	. 05007	19.9702	. 06759	14.7954	8
	. 01542	64.8580	. 03288	30.4116	. 05037	19.8546	. 06788	14.7317	7
	. 01571	63.6567	. 03317	30.1446	. 05066	19.7403	. 06817	14.6685	6
	. 01600	62.4992	. 03346	29.8823	. 05095	19.6273	. 06847	14.6059	5
	. 01629	61.3829	. 03376	29.6245	. 05124	19.5156	. 06876	14.5438	4
	. 01658	60.3058	. 03405	29.3711	. 05153	19.4051	. 06905	14.4823	8
	. 01687	59.2659	. 03434	29.1220	. 05182	19.2959	. 06934	14.4212	2
	. 01716	58.2612	. 03463	28.8771	. 05212	19.1879	. 06963	14.3607	,
	. 01746	57.2900	. 03492	28.6363	. 05241	19.0811	. 06993	14.3007	0
	Cotang Tang		$\overline{\text { Cotang Tang }}$		Cobang	Tang	otan	Tang	
	89°		88°		87°		86°		

TABLE VII.-Continued.

Natural Tangents and Cotangents.

	$4{ }^{\circ}$		5°		6°		70		,
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 06993	14.3007	. 08749	11.4301	. 10510	9.51436	. 12278	8.14435	$\overline{60}$
1	.07022	14.2411	. 08778	11.3919	. 10540	9.48781	. 12308	8.12481	59
2	. 07051	14.1821	. 08807	11.3540	. 10569	9.46141	. 12338	8.10536	58
3	. 07080	14.1235	. 08837	11.3163	. 10599	9.43515	. 12367	8.08600	57
4	. 07110	14.0655	. 08866	11.2789	. 10628	9.40904	.12397	8.06674	56
	. 07139	14.0079	. 08895	11.2417	. 10657	9.38307	. 12426	8.04756	55
6	. 07168	13.9507	. 08925	11.2048	. 10687	9.35724	. 12456	8.02848	54
7	. 07197	13.8940	. 08954	11.1681	. 10716	9.33155	. 12485	8.00948	53
8	. 07227	13.8378	. 08983	11.1316	. 10746	9.30599	. 12515	7.99058	52
9	. 07256	13.7821	. 09013	11.0954	. 10775	9.28058	. 12544	7.97176	51
10	. 07285	13.7267	. 09042	11.0594	. 10805	9.25530	. 12574	7.95302	50
11	. 07314	13.6719	. 09071	11.0237	. 10834	9.23016	. 12608	7.93438	49
12	. 07344	13.6174	. 09101	10.9882	. 10863	9.20516	. 12633	7.91582	48
13	. 07373	13.5634	. 09130	10.9529	. 10893	9.18038	. 12662	7.89734	47
14	. 07402	13.5098	. 09159	10.9178	. 10922	9.15554	. 12692	7.87895	46
15	. 07431	13.4566	. 09189	10.8829	. 10952	9.13093	.12722	7.86064	45
16	. 07461	13.4039	. 09218	10.8483	. 10981	9.10646	. 12751	7.84242	44
17	. 07490	13.3515	. 09247	10.8139	. 11011	9.08211	. 12781	7.82428	43
18	. 07519	13.2996	. 09277	10.7797	. 11040	9.05789	. 12810	7.80622	42
19	. 07548	13.2480	. 09306	10.7457	.11070	9.03379	. 12840	7.78825	41
20	. 07578	13.1969	. 09	10.7119	. 11099	9.00983	. 12869	7.77035	40
21	. 07607	13.1461	. 09365	10.6783	. 1112	8.98598	. 12899	7.75254	39
22	. 07636	13.0958	. 09394	10.6450	. 11158	8.96227	. 12929	7.73480	38
23	. 07665	13.0458	. 09423	10.6118	. 11187	8.93867	. 12958	7.71715	37
24	. 07695	12.9962	. 09453	10.5789	. 11217	8.91520	. 12988	7.69957	36
25	. 07724	12.9469	. 09482	10.5462	. 11246	8.89185	. 13017	7.68208	35
26	. 07753	12.8981	. 09511	10.5136	.11276	8.86862	. 13047	7.66466	34
27	. 07782	12.8496	. 09541	10.4813	. 11305	8.84551	. 13076	7.64732	33
28	. 07812	12.8014	. 09570	10.4491	. 11335	8.82252	.13106	7.63005	32
29	. 07841	12.7536	. 09600	10.4172	. 11364	8.79964	. 13136	7.61287	31
30	. 07870	12.7062	. 09629	10.3854	11394	8.77689	43165	7.59575	30
31	. 07899	12.6591	. 09658	10.3538	. 11423	8.75425	. 13195	7.57872	29
32	. 07929	12.6124	. 09688	10.3224	. 11452	8.73172	. 13224	7.56176	28
33	. 07958	12.5660	. 09717	10.2913	. 11482	8.70931	. 13254	7.54487	27
34	. 07987	12.5199	. 09746	10.2602	. 11511	8.68701	. 13284	7.57806	26
35	. 08017	12.4742	. 09776	10.2294	. 11541	8.66482	. 13313	7.51132	25
36	. 08046	12.4288	. 09805	10.1988	. 11570	8.642\% 5	. 13343	7.49465	24
37	. 08075	12.3838	. 09834	10.1683	. 11600	8.62078	. 13372	7.47806	23
38	. 08104	12.3390	. 09864	10.1381	. 11629	8.59893	. 13402	7.46154	22
39	. 08134	12.2946	. 09893	10.1080	. 11659	8.57718	. 13432	7.44509	21
40	. 08163	12.2505	. 09923	10.0780	. 11688	8.55555	. 13461	7.42871	20
41	. 08192	12.2067	. 0	10.0483	. 11718	\& 53402	. 13491	7.41240	19
42	. 08221	12.1632	. 09981	10.0187	. 11747	8.51259	. 13521	7.39616	18
43	.08251	12.1201	. 10011	9.98931	. 11777	8.49128	. 13550	7.37999	17
44	. 08280	12.0\%72	. 10040	9.96007	. 11806	$8.4 \% 007$. 13580	7.36389	16
45	. 08309	12.0346	. 10069	9.93101	. 11836	8.44896	. 13609	7.34786	15
46	. 08339	11.9923	. 10099	9.90211	. 11865	8.42795	. 13639	7.33190	14
47	. 08368	11.9504	. 10128	9.87338	. 11895	8.40705	. 13669	7.81600	13
48	. 08397	11.9087	. 10158	9.84482	. 11924	8.88625	. 13698	7.30018	12
49	. 08427	11.86%	. 10187	9.81641	. 11954	8.36555	. 13778	7.28442	11
50	. 08456	11.8262	. 10216	9.78817	. 11983	8.34496	. 13758	7.26873	10
51	. 08485	11.7853	. 10246	8.76009	. 12013	8.32446	. 13787	7.25310	9
52	. 08514	11.7448	. 10275	9.73217	. 12042	8.30406	. 13817	7.233754	8
53	. 08544	11.7045	. 10305	9.70441	. 12072	8.28376	. 13846	7.22204	7
54	. 08573	11.6645	. 10334	9.67680	. 12101	8.26355	. 13876	7.20661	6
55	. 08602	11.6248	. 10363	9.64935	. 12131	8.24345	. 13906	7.19125	4
56	. 08632	11.5853	. 10393	9.62205	. 12160	8.22344	. 13935	7.17594	4
58	. 08661	11.5461	. 10422	9.59490	. 12190	8.20352	. 13965	7.16071	3
58	. 08690	11.5072	. 10452	9.56791	. 12219	8.18370	. 13995	7.14553 7.13042	1
59	. 08720	11.4685	. 10481	9.54106	. 12249	8.16398	. 14024	7.13042 7.11537	1
60	. 08749	11.4301	10510	9.51436	. 12278	8.14435	. 14054	7.11537	0
	Cotang	Tang	Cotang Tang		$\overline{\text { Cotang }}$	Tang	Cotang	Tang	
	85°		84°		83°		82°		

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	8°		$9{ }^{\circ}$		10°		11°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	0 .14054	7.11537	. 15838	6.31375	. 17633	5.67128	. 19438	5.14455	$\overline{60}$
	1.14084	7.10038	. 15868	6.30189	. 17663	5.66165	. 19468	5.13658	59
2	. 14113	7.08546	. 15898	6.29007	. 17693	5.65205	. 19498	5.12862	58
3	3.14143	7.07059	. 15928	6.27829	. 17723	5.64248	. 19529	5.12069	57
	. 11173	7.05579	. 15958	6.26655	. 17753	5.63295	. 19559	5.11279	56
5	. 14202	7.04105	. 15988	6.25486	. 17783	5.62344	. 19589	5.10490	55
6	6.14232	7.02637	. 16017	6.24321	. 17813	5.61397	. 19619	5.09704	54
7	. 14262	6.91174	. 16047	6.23160	. 178843	5.60452	. 19649	5.08921	${ }_{59}^{53}$
8	. 142931	6.99718 6.98268	.16077 .16107	6.22003 6.20851	.17873 .17903	5.59511 5.58573	. 19680	5.08139 5.07360	52
10	. 14351	6.96823	. 16137	6.19703	. 17933	5.57638	. 19740	5.06584	50
11	. 14381	6.95385	. 16167	6.18559	. 17963	5.56706	. 19770	5.05809	49
12	. 14410	6.93952	. 16196	6.17419	. 17993	5.55777	. 19801	5.05037	48
13	. 14440	6.92525	. 16226	6.16283	. 18023	5.54851	. 19831	5.04267	47
14	. 14470	6.91104	. 16256	6.15151	. 18053	5.53927	. 19861	5.03499	46
15	. 14499	6.89688	. 16286	6.14023	. 18083	5.53007	. 19891	5.02734	45
16	. 14529	6.88278	. 16316	6.12899	. 18113	5.52090	. 19921	5.01971	44
17	. 14559	6.86874	. 16346	6.11779	. 18143	5.51176	. 19952	5.01210	43
18	. 14588	6.85475	. 16376	6.10664	. 18173	5.50264	. 19982	5.00451	42
19	. 14618	6.81082	. 16405	6.09552	. 18203	5.49356	. 20012	4.99695	41
20	. 14648	6.82694	. 16435	6.08444	. 18233	5.48451	. 20042	4.98940	40
21	. 14678	6.81312	. 16465	6.07340	. 18263	5.47548	. 20073	4.98188	39
22	. 14707	6.79936	. 16495	6.06240	. 18293	5.40048	. 20103	4.97438	
23	. 14737	6.78564	. 16525	6.05143	. 18323	5.45751	. 20133	4.96690	37
24	. 14767	6.77199	. 16555	6.04051	. 18353	5.44857	. 20164	4.95945	36
25	. 14796	6.75838	. 16585	6.02962	. 18384	5.43966	. 20194	4.95201	35
26	. 14826	6.74483	. 16615	6.01878	. 18414	5.43077	. 20224	4.94460	34
27	. 14856	6.73133	. 16645	6.00797	. 18444	5.42192	. 20254	4.93721	33
28	. 14886	6.71789	. 16674	5.99720	. 18474	5.41309	. 20235	4.92984	32
2	. 14915	6.70450	. 16704	5.93646	. 18504	5.40429	. 20315	4.92249	1
30	. 14945	6.69116	. 16734	5.97576	. 18534	5.39552	. 20345	4.91516	30
31	. 14975	6.67787	. 16764	5.96510	. 18564	5.38677	. 20376	4.90785	29
32	. 15005	6.66463	. 16794	5.95448	. 18594	5.37805	. 20406	4.90056	28
33	. 15034	6.65144	. 16824	5.94390	. 18624	5.36936	. 20436	4.89330	27
34	. 15064	6.63831	. 16854	5.93335	. 18654	5.36070	. 20466	4.88605	26
35	. 15094	6.62523	. 16884	5.92283	. 18684	5.35206	. 20497	4.87882	5
36	. 15124	6.61219	. 16914	5.91236	. 18714	5.34345	. 20527	4.87162	24
37	. 15153	6.59921	. 16944	5.90191	. 18745	5.33487	. 20557	4.86444	23
38	. 15183	6.58627	.16974	5.89151	. 18775	5.32631	. 20588	4.85727	2
39	. 15213	6.57339	. 17034	5.88114	. 18805	5.31778	. 20618	4.85013	21
40	. 15243	6.56055	. 17033	5.87080	. 18835	5.30928	. 20648	-4.84300	20
41	. 15272	6.54777	17063	5.86051	. 18865	5.30080	. 20679	4.83590	19
42	. 15302	6.53503	. 17093	5.85024	. 18895	5.29235	. 20709	4.82882	18
43	. 15332	6.52234	. 17123	5.84001	. 18925	5.28393	. 20739	4.82175	17
44	. 15362	6.50970	. 17153	5.82982	. 18955	5.27553	. 20770	4.81471	16
45	. 15391	6.49710	. 17183	5.81966	. 18986	5.26715	. 20800	4.80769	15
46	. 15421	6.48456	. 17213	5.80953	. 19016	5.25880	. 20830	4.80068	-
47	. 15451	6.47206	. 17243	5.79944	. 19046	5.25048	. 20861	4.79370	13
48	. 15481	6.45961	. 17273	5.78938	. 19076	5.24218	. 20891	4.78673	12
49	. 15511	6.44720	. 17303	5.77936	. 19106	5.23391	. 20921	4.77978	11
50	. 15540	6.43484	. 17	5.76937	. 19136	5.22566	. 209	4.77286	10
51	. 15570	6.42253	. 17363	5.75941	. 19166	5.21744	. 20982	4.76595	
53	. 15600	6.41026	. 17393	5.74949	. 19197	5.20925	. 21013	4.75906	8
53	. 15630	${ }^{6.39804}$. 17423	5.73960	. 19227	5.20107	. 21043	4.75219	7
54	. 15660	6.38587	. 17453	5.72974	. 19257	5.19293	. 21073	4.74534	6
55	. 15689	6.37374	. 17483	5.71992	. 19287	5.18480	. 21104	4.73851	5
56	. 15719	6.36165	. 17513	5.71013	. 19317	5.17671	. 21134	4.73170	4
57	. 15749	6.34961	. 17543	5.70037	. 19347	5.16863	. 21164	4.72490	8
58	. 15779	6.33761	. 17573	5.69064	. 19378	5.16058	. 21195	4.71813	2
5	. 15809	6.32566	17603	5.68094	. 19408	5.15256	.21225	4.71137	1
60	. 15838	6.31375	. 17633	5.67128	. 19438	5.14455	. 21256	4.70463	0
	Cotang	Tang	Cotang	Tang	$\overline{\text { Cotang }}$	Tang	Cotang	Tang	

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	12°		13°		14°		15°		
	ang	Cotang	Ta	Cotang	Tang	Cotang	Tang	Cotang	
0	. 212	4.70463	. 2308	4.33148	. 2493	4.01078	. 26795	3.73205	0
	. 21286	4.69	. 23117	4.32573		4.00582		3.72771	59
	. 21316	4.69121	. 23148	4.32001	. 2499	4.00086	. 268	3.ヶ2338	58
3	. 21347	4.68452	. 23179	4.31430	. 25026	3.99592	. 26888	3.71907	57
4	. 21377	4.67786	. 23209	4.30860	. 25056	3.99099	. 26920	3.71476	56
	. 2140	4.67121	. 23240	4.30291	. 2508	3.98607	. 26951	3.71046	
	. 2143	4.6645	. 23271	4.29\%74	. 25118	3.98117	. 2698	3.70616	
	. 21469	4.65797	. 23301	4.29159	. 25149	3.97627	. 27013	3.70188	53
	. 21499	4.6513	23	4.28595	. 25180	3.97139	. 270	3.69761	52
	. 21	4.64	. 23363	4.28032	. 25	8.9665		3.6833	
	. 21	4.63			. 25242			3.	50
11	. 215	4.631	. 23	4.26911	. 252	3.95680	27	3.68485	49
12	. 21621	4.6251		4.26352	. 2530	3.95196	. 2710	3.68061	48
	. 21651	4.6186	. 23	4.25795	. 25335	3.91713	. 27201	3.67688	47
14	. 21682	4.61219	. 23516	4.25239	. 25366	3.94232	. 27232	3.67217	46
15	. 21712	4.60572	. 23547	4.24685	. 25397	3.93751	. 2726	3.66796	45
16	. 21743	4.599		4.24132	. 2542	3.93271	.2\%2	3.663r6	44
17	. 21773	4.59283	. 2360	4.23580	. 25459	3.92793	. 2732	3.6	43
18	. 2180	4.58641	. 2363	4.23030	. 25490	3.93316	. 2735	3.65538	42
19	. 21834	4.5800	. 2367	4.22481	. 25521	3.91839	. 27	3.65121	
20	. 21864	4.57363	2370	4.21933	. 2555	3.9136	. 27419	3.6	
21	. 2189	4.5	. 2373	4.21387	. 2558	3.90890	27	3.64289	39
22	. 2192	4.56	. 23	4.20842	. 2561	3.90417	. 27482	3.63874	38
23	. 2195	4.55	. 23	4.20298	. 2564	3.89945	. 27513	3.63461	
	. 21986	4.548	288	4.19756	. 256	3.8947	. 275	3.6	
25	. 22017	4.54196	. 2385	4.19215	. 2570	3.89004	. 2757	3.62636	
26	. 2204	4.5356	. 2388	4.1867	. 2573	3.88536	. $2 \pi 60$	3.62224	
	. 2207	4.6529	391	4.18137	. 25769	3.88068	. 2763	3.618	
28	. 22108	4.52316	. 2394	4.17600	. 25800	3.87601	. 27670	3.61405	
29	. 21213	4.51693	. 2397	4.17	. 2588	3.871	. 27701	3.60996	
30	. 22	4.51071		4.16530	. 25862		. 277		
	. 22200	4.	2403	4.15997	. 25	3.	. 27		
32	. 2223	4.49832	. 24069	4.1546	. 25924	3.85745	. 27%	3.59775	
33	. 222	4.49215	. 24100	4.14934	. 2595	3.85284	. 278	3.59370	
34	.22292	4.4860	. 24131	4.14405	. 25981	3.84824	. 2788		
35	.22322	4.47986	. 24162	4.13877	. 26017	3.84364	. 27889	3.58562	
	. 223	4.4737	. 2419	4.1335	. 26048	3.839	. 2792	3.58160	
	. 2238	4.46	. 2422	4.12825	. 26019	3.83442	. 279		
	. 2241	4.4615	. 2425	4.12301	. 26110	3.82992	. 2798	3.57357	22
	. 224	4.45	. 24	4.1	. 26141	3.8253	. 280	3.5695\%	21
40	. 22	4.44942			. 26172	3.82083			20
41	. 2								18
	. 2253	4.4373	2437	4.10216	. 26235	3.81177	. 2810	3.55761	
43	. 2256	4.43134	. 24408	4.09699	. 2626	3.80726	. 281	3.55364	17
44		4.4	. 24439	4.09182	. 2629	3.80276	. 2817	3.5496	
	. 2262	4.4	. 24470	4.08666	. 2632	3.7982	. 282	3.545	
46	. 22658	4.41340	. 24501	4.08152	. 26359	3.79378	. 2823	3.54179	14
	. 22689	4.40745	. 2453	4.07639	. 26390	3.78931	2820		
	. 2271	4.40	. 245	4.07127	. 26421	3.78485	. 28297	3.53393	
	.22750	4.39560	. 24593	4.06616	. 2645	3.78040	.28329	3.53001	11
50	. 2278	4.38969	. 2	4.	. 2648	3.77595	. 28360		10
							析		
	.2281	4.3779	24681	4.05092	. 2654	3.76709	. 2842	3.51829	
	. 22872	4.37207	. 24717	4.04586	. 26577	3.76268	. 2845	3.51441	
	. 2290	4.36623	. 2474	4.04081	. 2660	3.75828	. 28486	3.51	
	. 22934	4.36040	. 24778	4.03578	. 26639	3.75388	. 28517	3.5060	
	. 22964	4.35459	. 24809	4.03076	. 26670	S.74950	. 28549	3.50279	
		4.34879	. 24840	4.02574	. 2670	3.74512	. 2858	3.4989	
	. 2302	4.343	. 2487	4.02074	. 2673	3.74075	. 2861	3.4950	
60	. 23056	4.3371 4.331	. 24902	4.01576 $4.010 \% 8$.2576	3.73640 3.73205	. 288643	$\begin{aligned} & 3.491 \\ & 8.487 \end{aligned}$	0
	Cotang			Tang	Cotang	Tang	Cotang	Tang	

TABLE VII.-Continued.

Natural Tangents and Cotangents.

	16°		17°		18°		19°		,
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 28675	3.48741	. 30573	3.27085	. 32492	3.07768	. 34433	2.90421	$\overline{60}$
	. 28706	3.48359	. 30605	3.26745	. 32524	3.07464	. 34465	2.90147	59
2	. 28738	3.47977	. 30637	3.26406	. 32555	3.07160	. 34498	2.89873	58
3	. 28769	3.47596	. 30669	3.26067	. 32588	3.06857	. 34530	2.89600	57
4	. 288800	3.47216 3.46837	. 30700	3.25729 3.25392	. 32621	3.06554	. 34563	2.89327	56
5	. 28884	${ }_{3} .46458$. 30764	3.25055	. 326	3.05950	. 34628		55
	. 28895	3.46080	. 30796	3.24719	. 32717	3.05649	. 34661	2.88511	53
8	. 28927	3.45703	. 30828	3.24383	. 32749	3.05349	. 34693	2.88240	52
	. 28958	3.45327	. 30860	3.24049	. 32782	3.05049	. 34726	2.87970	51
10	. 28990	3.44951	. 30891	3.23714	. 32814	3.04749	. 34758	2.87700	50
11	. 29021	3.44576	. 30923	3.23381	. 32846	3.04450	. 34791	2.87430	49
12	. 29053	3.44202	. 30955	3.23048	. 32878	3.04152	. 34824	2.87131	48
13	. 29084	3.43829	. 30987	3.22715	. 32911	3.03854	. 34856	2.86892	47
14	. 29116	3.43456	. 31019	3.22384	. 32943	3.03556	. 34889	2.86624	46
15	. 29147	3.43084	. 31051	3.22053	. 32975	3.03260	. 34922	2.86356	45
16	. 29179	3.42713	. 31083	$3.21 \% 22$. 33007	3.02963	. 34954	2.86089	44
1%	. 29210	3.42343	. 31115	3.21392	. 33040	3.02667	. 34987	2.85822	43
13	. 29242	3.41973	. 31147	3.21063	. $330 \% 2$	3.02372	. 35020	2.85555	42
19	. 29224	3.41604	. 31178	3.20734	. 33104	3.02077	. 35052	2.85289	41
20	. 29305	3.41236	. 31210	3.20406	. 33136	3.01783	. 35085	2.85023	40
21	. 29337	3.40869	. 31242	3.20079	. 33169	3.01489	. 35118	2.84758	39
2	. 29368	3.40502	. 31274	3.19752	. 33201	3.01196	. 35150	2.84494	38
23	. 29400	3.40136	. 31306	3.19426	. 33233	2.00903	. 35183	2.84229	37
24	. 29132	3.39771	. 31338	3.19100	. $332 \mathrm{C6}$	3.00611	. 35216	2.83965	36
25	. 29463	3.39406	. 31370	3.187\%	. 33298	3.00319	. 35248	2.83702	35
26	. 29495	3.39042	. 31402	3.13451	. 23330	3.00028	. 35281	2.83439	34
27	. 29526	3.38679	. 31434	3.18127	. 33363	2.99738	. 35314	2.83176	33
28	. 29558	3.38317	. 31466	3.17804	. 33395	2.99447	. 35346	2.82914	32
29	. 29590	3.37955	. 31498	8.17481	. 23427	2.99158	. 35379	2.82653	31
30	. 29621	3.37594	. 3153	3.17159	. 33460	2.98868	. 354	2.82391	30
31	. 29653	3.37234	. 31562	3.16838	. 38492	2.98580	. 35445	2.82130	29
	. 29685	3.36875	. 31594	3.10517	. 33524	2.98292	. 35477	2.81870	28
33	. 29716	3.36516	. 31626	3.16197	. 33557	2.98004	. 35510	2.81610	27
34	. 29748	3.36158	. 31658	3.15877	. 33589	2.97717	. 35543	2.81350	26
	. 29780	3.35800	. 31690	3.15558	. 33621	2.97430	. 35576	2.81091	25
36	. 29811	3.35443	. 31722	3.15240	. 33654	2.97144	. 35608	2.80833	24
37	. 29843	3.35087	. 31754	3.14922	. 33686	2.96858	. 35641	2.80574	23
38	. 29875	3.34732	. 31786	3.14605	. 33718	$2.965 \% 3$. 35674	2.80316	22
39	. 29906	3.34377	. 31818	3.14288	. 33751	2.96288	. 35707	2.80059	21
40	. 29938	3.34023	. 31850	3.13972	. 33783	2.96004	. 35740	2.79802	20
41	. 29970	3.33670	. 31882	3.13656	. 33816	2.95721	. 35772	2.79545	19
	. 30001	3.33317	. 31914	3.13341	. 33848	2.95437	. 35805	2.79289	18
43	. 30033	3.32965	. 31946	3.13027	. 33881	2.95155	. 35838	2.79033	17
44	. 30065	3. 32614	. 31978	3.12713	. 33913	2.94872	. 35871	2.78778	16
45	. 30097	3.32264	. 32010	3.12400	. 33945	2.94591	. 35904	2.78523	15
46	. 30128	3.31914	. 32042	3.12087	. 33978	2.94309	. 35937	2.78269	14
47	. 30160	3.31565	. 32074	3.11775	. 34010	2.94028	. 35969	2.78014	13
	. 30192	3.31216	. 82106	3.11464	. 34043	2.93748	. 36002	2.77761	12
40	. 30224	3.30868	. 32139	3.11153	. 34075	2.93468	. 36035	2.77507	11
50	. 30255	3.30521	. $321 \% 1$	3.10842	. 34108	2.93189	. 36068	2.77254	10
51	. 30287	3.30174	. 32203	3.10532	. 34140	2.92910	. 36101	2.77002	9
	. 30319	3.29829	. 32235	3.10223	. 34173	2.92632	. 36134	2.76750	8
53	. 30351	3.29483	. 32267	3.09914	. 34205	2.92354	. 36167	2.76498	7
54	. 30382	3.29139	. 32299	3.09606	. 34238	$2.920 \sim 6$. 36199	2.76247	6
	. 30414	3.28795	. 32331	3.09298	. 34270	2.91799	. 36232	2.75996	5
5	. 30446	3.28452	. 32363	3.08991	. 34303	2.91523	. 36265	$2.75 \% 46$	4
5	. 30478	3.28109	. 32396	3.08685	. 34335	2.91246	. 36298	2.75496	3
	. 30509	3.27767	. 32428	3.08379	. 34368	2.90971	. 36331	2.75246	2
	30541	3.27426	. 32460	3.08073	. 34400	2.90696	. 36364	2.74997	1
60	30573	3.27085	. 32492	3.07768	. 34433	2.90421	36397	2.74748	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	
							7	0°	

TABLE VII. - Continued.
Natural Tangents and Cotangents.

	20°		21°		22°		23°		
	Tang	Cota	Tang		Ta	Cotang	Tang	Cotang	
	0 ${ }^{\text {a }} 363897$			2.6	. 40403	2.47509	. 42447	2.35585	$\overline{60}$
	${ }_{2}^{1}{ }^{1} .3644$	${ }_{2}^{2.74499}$. 38453	2.60	. 40436	${ }_{2}^{2.47302}$	2	2.35395	59
	3 . 364	2.74004	. 38487	${ }_{2.59831}^{2.6057}$. 40504	2.478888	. 4251551	2.35205	5
	4.36529	2.73756	. 38	2.59606	. 40538			${ }_{2} 2.34825$	56
	5.38562	2.735	. 385		. 405	2.464	. 42619	2.34636	55
			. 38	2.591	. 40606	2.46270	. 42654	2.34447	54
	7 8.36	${ }^{2.73017}$. 38680	2.58932	. 40640	2.46005	. 42688	2.34	53
	${ }^{8} .366694$	2.72771	. 388687	2.5	${ }^{.40674} 4$	2.45860			
	${ }^{1}$. 36727	${ }_{2.72281}$. 38821	2.58261	. 40741	2.4545	. 42791	2.33693	50
	. 3676	2.720	. 38	2.58	. 40	2.45	428	2.33	49
				2.57	:4080	2.45043	. 42860	2.33	48
	. 36	${ }_{2}^{2.7}$. 38	${ }^{2} .57593$. 40843	2.44839	. 42894	2.33	7
		${ }_{2}$		2.	. 40	2.44	. 42	2.3	5
	. 3	2.\%0	. 38	2.56	. 40	2.4	. 43032	2.3	3
			. 38988	2.56	. 41013	2.43	. 43067	2.3	2
		2.70		2.5	. 41047	2.43	. 43101	2.3	41
	. 37057	2.698	. 39055	2.56	. 410	2.43	. 43136	2.31	40
	. 37090	2.69612	. 39089	2.	. 411	2.43	43170	2.31	39
	. 311	2.693	. 39122	2.5	. 411	2.43	. 43	2. 31	8
	. 37				. 411	2.42			
	. 37190	2.	. 39	2.55	. 41217	2.42	. 43274	2.3	36
	. 3	2.68	. 392	${ }_{2}^{2.54}$. 412285	2.42	. 433343		55
	. 372	2.68175	. 39290	2.545	. 41319	2.42019	. 43378	2.30534	33
	. 373	${ }^{2.6793}$		2.54	. 41353		. 43412	2.30	
	0 . 37388	2.67462	. 3939	2.5	. 414	2.41	. 43481	2.29984	30
	. 37422	2.67225	. 34425	2.53648	. 41455	2.412	43516	2.29801	29
	. 374458	2.669	. 33443	${ }^{2} .533$. 41490	2.410	. 43550	2.29619	${ }^{8}$
					. 415				7
					. 415				
	. 375888	2.6	${ }^{3} 3959$	${ }^{2.52} 5$	${ }^{416660}$	2.4	. 436	2.28891	24
		${ }_{2.65}$. 393660	2.52142	. 41694	2.39	. 43758	2.28	-
		2.65342	. 39691	2.51929	. 41728	2.396	. 43793	2.28348	21
	. 37720	2.65109	. 39727	2.51715	. 41763	2.39449	. 43828	2.28167	20
	. 37754	2.6	. 39	2.51	. 4179	2.39	43	2.27	19
	. 36	2.64642		2.5128	. 4183	2.39	. 438	2.278	18
	. 37	2.6	. 39	2.5	. 41865	2.38863	${ }^{.} 4339326$	2.27	${ }^{17}$
	. 37	${ }_{2.63945}$. 39	${ }_{2} .50652$	${ }^{41933}$	${ }_{2.38473}$	${ }^{.449001}$	2.22	15
	,	2.63714	. 399	2.504	. 419	2.38	. 440	2.2π	14
								2.26	3
		2.63252	. 3993	2.50	. 4203		. 411	2.2	
		${ }_{2}^{2.630}$. 400		. 42000		. 4141	2.26	11
					. 42139				10
	. 38	2.62332	. 40132	2.49177	. 42173	2.37118	. 442	2.26	8
	. 38153	2.62103	. 40166			2.369	. 442	2.25	7
		2.	. 40	2.48	42242	2.36	. 443		6
		2.6	${ }^{40} 40234$	2.48549	.42236	2	. 44		5
		2.61190	. 40301	2.48132	. 42345	2.361	. 44418	2.25132	3
	${ }^{38320}$	2.60963	. 40335	2.47924	. 42379	2.35967	. 44453	2.24956	2
	${ }^{38353}$	2.600	369	2.47716	42413	2.357	44488	2.24780	
60	. 38386	2.60509	40403	2.47509	42447	2.35585	. 44523	2.24604	0
	Cot	ang	Cotang	an	Cotang	Tang	Cotang	Tan	
		9°		8°					

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	24*		25°		26°		27°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 44523	2.24604	. 46631	2.14451	. 48773	2.05030	. 50953	1.96261	$\overline{60}$
	. 44558	2.24428	. 46666	2.14288	. 48809	2.04879	. 50989	1.96120	59
2	. 44593	2.24252	. 46702	2.14125	. 48845	2.04728	. 51026	1.95979	58
3	. 44627	$2.240 \pi 7$. 46737	2.13963	. 48881	2.04577	. 51063	1.95838	57
4	. 44662	2.23902	. 46772	2.13801	. 48917	2.04426	. 51099	1.95698	56
5	. 44697	2.23727	. 46808	2.13639	. 48353	2.04276	. 51136	1.95557	55
6	. 44732	2.23553	. 46843	2.13477	. 48989	2.04125	. 51173	1.95417	54
7	. 444807	${ }_{2}^{2.23378}$. 46879	2.13316	. 49026	2.03975	. 51209	1.95277	${ }^{53}$
9	. 44837	${ }_{2} 2.23030$. 46959	${ }_{2}$. 490098	${ }_{2.036 \%}^{2.03825}$. 512483	1.95137	51
10	. 44872	2.22857	. 46985	2.12832	. 49134	2.03526	. 51319	1.94858	50
11	. 44907	2.22683	. 47021	2.12671	. 49170	2.03376	. 51356	1.94718	49
12	. 44942	2.22510	. 47056	2.12511	. 49206	2.03227	. 51393	1.94579	48
13	. 44977	2.22337	. 47092	2.12350	. 49242	2.03078	. 51430	1.94440	47
14	. 45012	2.22164	. 47128	2.12190	. 49278	2.02929	. 51467	1.94301	46
15	. 45047	2.21992	. 47163	2.12030	. 49315	2.02780	. 51503	1.94162	45
16	. 45082	2.21819	. 47199	2.11871	. 49351	2.02631	. 51540	1.94023	44
17	. 45117	2.21647	. 47234	2.11711	. 49387	2.02483	. 51577	1.93885	43
18	. 45152	2.21475	. 47270	2.11552	. 49423	2.02335	. 51614	1.93746	42
19	. 45187	2.21304	. 47305	2.11392	. 49459	2.02187	. 51651	1.93608	41
20	. 45222	2.21132	. 47341	2.11233	. 49495	2.02039	. 51688	1.93470	40
21	. 45857	2.20961	. 47377	2.11075	. 49532	2.01891	. 51724	1.93332	39
22	. 45292	2.20790	. 47412	2.10916	. 49568	2.01743	. 51761	1.93195	
23	. 45327	2.20619	. 47448	2.10758	. 49604	2.01596	. 51798	1.93057	37
24	. 45362	2.20449	. 47483	2.10600	. 49640	2.01449	. 51835	1.92920	36
25	. 45397	2.20278	. 47519	2.10442	. 49677	2.01302	. 51872	1.92782	35
26	. 45432	2.20108	. 47555	2.10284	. 49713	2.01155	. 51909	1.92645	34
27	. 45467	2.19938	. 47590	2.10126	. 49749	2.01008	. 51946	1.92508	33
28	. 45502	2.19769	. 47626	2.09969	. 49786	2.00862	. 51983	1.92371	32
29	. 45538	2.19599	. 47662	2.09811	. 49822	2.00715	. 52020	1.92235	31
30	. 455 \%3	2.19430	. 47698	2.09654	. 49858	2.00569	. 52057	1.92098	30
31	. 45608	2.19261	. 47733	2.09498	. 49894	2.00423	. 52094	1.91962	29
32	. 45643	2.19092	. 47769	2.09341	. 49931	2.00277	. 52131	1.91826	28
33	. 45678	2.18923	. 47805	2.09184	. 49967	2.00131	. 52168	1.91690	27
34	. 45713	2.1875	. 47840	2.09028	. 50004	1.99986	. 52205	1.91554	26
35	. 45748	2.18587	. 47876	2.088%	. 50040	1.99841	. 52242	1.91418	25
36	. 45784	2.18419	. 47912	2.08716	. 50076	1.99695	. 52279	1.91282	${ }_{2}^{24}$
37	. 45819	2.18251	. 47948	2.08560	. 50113	1.99550	. 52316	1.91147	23
38	. 45854	2.13084	. 47984	2.08405	. 50149	1.99406	. 52353	1.91012	22
39	. 45889	2.17916	. 48019	2.08250	. 50185	1.99261	. 52390	1.90876	21
40	. 45924	2.17749	. 48055	2.08094	. 50222	1.99116	. 52427	1.90741	20
41	. 45960	2.17582	. 48091	2.07939	. 50258	1.98972	. 52464	1.90607	19
42	. 45995	2.17416	. 48127	2.07785	. 50295	1.98828	. 52501	1.90472	18
43	. 46030	2.17249	. 48163	2.07630	. 50331	1.98684	. 52538	1.90337	17
44	. 46065	2.17083	. 48198	2.07476	. 50368	1.98540	. 52575	1.90203	16
45	. 46101	2.16917	. 48234	2.07321	. 50404	1.98396	. 52613	1.90069	15
46	. 46136	2.16751	. 48270	2.07167	. 50441	1.98253	. 52650	1.89935	14
47	. 46171	2.16585	. 48306	2.07014	. 50477	1.98110	. 52687	1.85801	13
48	. 46206	2.16420	. 48342	2.06860	. 50514	1.97966	. 52724	1.89667	12
49	. 46242	2.16255	. 48378	2.06706	. 50550	1.97823	. 52761	1.89533	11
50	.462\%7	2.16090	. 48414	2.06553	. 50587	1.97681	. 52798	1.89400	10
51	. 46312	2.15025	. 48450	2.06400	. 50623	1.97538	. 52836	1.89266	
52	. 46348	2.15760	. 48186	2.06247	. 50660	1.97395	. 528873	1.89133	8
53	. 46383	2.15596	. 48521	2.06094	. 50696	1.97253	. 52910	1.89000	7
55	. 46418	2.15432	. 48557	2.05942	. $50 ; 33$	1.97111	. 52947	1.88867	6
55	. 46454	2.15268	. 48593	2.05790	. 50769	1.96969	. 52985	1.88734	5
56	. 46489	2.15104	. 48629	2.05637	. 50808	1.96827	. 53022	1.88602	4
5	. $465 \% 5$	2.14940	. 48665	2.05485	. 50843	1.96685	. 53059	1.88469	3
58	. 46560	$2.14 \% 7$. 48701	2.05333	. 50879	1.96544	. 53096	1.88337	2
59	. 46595	2.14614	. 48737	2.05182	. 50916	1.96402	. 53134	1.88205	1
60	. 46631	2.14451	. 48773	2.05030	. 50953	1.96261	53171	1.88073	0
	Cotang	Tang	$\overline{\text { Cotang }}$	Tang	Cotang	Tang	$\overline{\text { Cotang }}$	Tang	

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	28°		29°		20°		31°		
	Tang	Cotang	Tang	Cot	Tang	Co	Tang	g	
0	. 5317	1.880	. $55431{ }^{-1}$	1.80405	. 57735	1.73	. 60086	1.66428	$\overline{60}$
	. 5322	1.87941	. 55469	1.80281	. 577874	1.73089	. 60126	1.66318	58
	. 532	${ }_{1}^{1.88677}$. 55545	1.80034	. 57851	${ }_{1} .72857$. 600205	1.66209 1.66099	58
	. 53	1.85046	. 55583	1. 99911		1. 72	. 60245	1.65	56
	523	1.87415		1.7978	.579				55
7	.53393	1.87283	. 5565697	1.19665	.589607	1. 12509	. 60	${ }_{1}^{1.65762}$	${ }_{5}^{54}$
	. 534450	1.87021	. 55736	1.79419	. 58046	1.	. 60403	1.65554	5
	. 53507	1.86891	. 5574	1. 192926	. 58085	1. 212163	. 60443	1.65445	51
10	. 53545	1.86760	. 55812	1. 191 ז14	. 58124	1.22047	. 60483	1.65337	50
11	. 533582	1.86	. 55	1. 79051	. 58	1.71932	.60522	1.65228	49
	. 533627	1.86		1. 18929	. 588210	1.7817		${ }_{1}^{1.65120}$	48
	. 53694	1.86239	. 55954	1.78685	. 588279	1.71588	. 606042	1.654903	4
	.53732	1.86109	. 56003	1.78563	. 58	1.71473	. 606	1.64795	45
		1.85	. 560	1. 28441		1.713		1.64687	4
	. 5	1.85		1.78		1.71244		1.64579	倍
	${ }_{538}$	1.85	${ }^{.56}$	1. 1.8198			. 608		${ }_{41}^{42}$
20	. 53920	1.85462	. 56194	1.77955	. 58513	1. 50901	. 60881	1.64256	40
21	.53957	1.85333	. 56232	1.7	. 58	1.70787	. 60921	1.64148	39
				1.7			. 609		38
				1. 77	. 58	1.70	. 610	1.63934	37
	${ }^{54070}$	1.84946	${ }^{.563}$	1.7471		1. 10446			36
	. 54145	1.846	. 56424	1.77230	. 587	1.:0219	. 61120	1.63612	34
	. 54183	1.84561	. 56462	1.77110		1.701	. 61160	1.63505	33
						1.69			
				768		1.6			
30	. 54296	177	.56	1.767	. 58	1.69	. 61	1.63185	30
	.54333	1.84049	. 56616	1.76629	. 58944	1.69633	. 61320	1.63079	29
	. 54371	1.83	. 56654	1. 766510		1.69541	. 61360	1.62972	
	. 544	1.837	. 56731	1. 1.762711	. 590	${ }_{1}^{1.69428} 1$. 6141440		
		1.83		1.7615	. 591	1.692		1.62654	5
				1.760	. 59140	1.690	${ }^{6} 6$		24
	. 545650	1.833	. 5688	1. 75913	. 59	1.68	. 61561	${ }_{1}^{1.62442}$	3
	. 54635	1.83	. 56	1. 1.7675	. 592	1.68754	. 61641	330	
40	. 54673	1.82906	. 56962	1.75556	. 59297	1.68643	. 61681	1.62125	2
		1.82	. 578000	1.754	. 593	1.685	. 61	1.62	19
	. 54748	1.826	. 5703	1.75319	. 593	1.68419	. 611	1.61	
	. 54	1.	${ }^{5}$	1.75	. 59	1.	. 618181	1.618	${ }_{16}^{17}$
45		1.82276	. 57155	1. 74964	. 59494	1.68085	. 61882	1.61	
		1.82150	. 57193	1.74846	. 5953	1.67974	. 619	1.61493	4
			. 572	1.747	59	1.67	. 61		3
			. 57271	1.74	. 596			1.61	1
50	. 55051	1.817649 1.818	. 57348	1.74	. 59	1.	62	1.61074	10
51	. 55089	1.81524	. 57386	1.742	. 59730	1.674	. 621	1.60970	9
	. 55127	1.81399	. 57425	1.741	.59770	1.673	. 6216	1.60865	
	5	1.812	. 57464	1.7403	. 598	1.671	. 622	1.60	
	. 5	1.81	${ }^{5} 575031$	1.739	. 598	1.67	. 62	1.60	6
		1.					.623	1.60553	5
57	. 55317	1.80777	. 57619	1.73555	. 599967	1.66757	. 623	1.60345	3
	. 55355	1.80653	. 57657	1.73438	60007	1.66647	. 62406	1.60241	2
	393	1.80529	696	1.73321	60046	1.66	. 62446	1.60137	1
60	55431	1.80405	. 57735	1.73205	. 60086	1.66488	. 62487	1.60033	0
	Co	Tang	Cotang	Tang	Co	Tan	tang	Tang	
		1°		0°					

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	32°		33°		34°		35°		
-	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 62487	1.60033	. 64941	1.53986	. 67451	1.48256	. 70021	1.42815	60
0	. 62527	1.59930	. 64982	1.53888	. 67493	1.48163	. 70064	1.42726	59
玉	. 62568	1.59826	. 65084	1.53791	. 67536	1.48070	. 70107	1.42638	58
3	. 62608	1.59723	. 65065	1.53693	. 67578	1.47977	. 70151	1.42550	57
4	. 62649	1.59620	. 65106	1.53595	. 67620	1.47885	. 70194	1.42462	56
5	. 62689	1.59517	. 65148	1.53497	. 67663	1.47792	. 70238	1.42374	55
6	.62730	1.59414	. 65189	1.53400	. 67705	1.47699	. 70281	1.42286	54
${ }^{7}$. 62770	1.59311	. 65231	1.53302	. 67748	1.47607	. 70325	1.42198	53
8	. 62811	1.59208	. 655272	1.53205	. 67790	1.47514	. 70368	1.42110	52
9	. 62852	1.59105	. 65314	1.53107	. 67832	1.47422	. 70412	1.42022	51
10	. 62892	1.59002	. 65355	1.53010	. 67875	1.47330	. 70455	1.41934	50
11	. 62933	1.58900	. 65397	1.52913	. 67917	1.47238	. 70499	1.41847	49
12	. 62973	1.58797	. 65438	1.52816	. 6796	1.47146	. 70542	1.41759	43
13	. 63014	1.58695	. 65480	1.52719	. 68002	1.47053	. 50586	1.41672	47
14	. 63055	1.58593	. 65521	1.52622	. 68045	1.46902	. 70629	1.41584	43
15	. 63095	1.58490	. 65563	1.52525	. 6808	1.43870	. 70673	1.41497	45
16	. 63136	1.58388	. 65604	1.52429	. 68130	1.467\%8	. 70717	1.41409	41
17	. 63177	1.58886	. 65646	1.52332	. 68173	1.46686	. 70760	1.41322	43
18	. 63217	1.58184	. 65688	1.52235	. 68215	1.46595	. 70804	1.41235	42
19	. 63258	1.58083	. 65729	1.52139	. 68258	1.49503	. 70348	1.41148	41
20	. 632	1.57981	. 65771	1.52043	. 6830	1.46411	. 708	1.41061	40
21	. 63340	1.57879	. 058	1.51946	. 683	1.46320	. 709	1.40974	9
22	. 63380	1.57778	. 65854	1.51850	. 68336	1.46229	. 70979	1.40887	83
23	. 63421	1.57676	. 65896	1.51 T04	. 68429	1.46137	. 71023	1.40300	\%
24	. 63462	1.575%	. 65938	1.51658	. 68471	1.46046	. 71066	1.40714	36
25	. 63503	1.57474	. 65980	1.51502	. 6351	1.45955	. 71110	$1.40<27$	5
26	. 63544	1.57372	. 66021	1.514C6	. 68557	1.45864	. 71154	1.40540	4
2	. 63584	1.57271	. 66063	1.51370	. 68600	1.45773	. 71198	1.40454	3
20	. 63625	1.57170	. 6610	1.51275	. 6864	1.45682	. 7124	1.40357	2
29	. 63666	1.57069	. 66147	1.51179	. 68885	1.45592	. 71285	1.40281	31
30	. 63707	1.56969	. 66183	1.51084	. 6872	1.455	. 713	1.40195	20
31	. 63	1.5	. 66230			1.4	. 71	1.4	2
	. 6378	1.56767	. $662{ }^{\circ}$	1.50893		1.453	. 714	1.40	
33	. 63830	1.56667	. 66314	$1.50 \% 97$. 6885	1.45229	. 71461	1.33936	27
34	. 63871	1.56566	. 66356	1.50702	. 68900	1.45139	. 71505	1.39850	26
	. 63912	1.56466	. 66303	1.50607	. 6894	1.45049	. 71549	1.39764	25
36	. 63953	1.56366	. 66440	1.50512	. 68985	1.44958	. 71593	1.39679	24
37	. 63994	1.56265	.66482	1.50417	. 69028	1.44868	. 71637	1.39593	
	. 64035	1.56165	. 66521	1.50322	. 69071	1.44778	. 71681	1.39507	2
39	. 64076	1.56065	.66566	1.50228	. 69114	1.44688	. 71725	1.39421	21
40	. 64	1.5	. 66608	1.5	. 69157	1.	. 71769	1.39336	20
41	. 64158	1.558	. 666	1.50038	. 6920	1.44508	. 71813	1.39250	19
4	. 64199	1.55766	. 66692	1.49944	. 69243	1.44418	. 71857	1.39165	13
43	. 64240	1.55666	. 66734	1.49849	. 69288	1.44329	. 71901	1.39079	17
44	. 64281	1.55567	. 66776	1.49755	. 69339	1.44239	. 71946	1.38994	16
45	. 64322	1.55467	. 66818	1.49661	. 69311	1.44149	- 71990	1.38909	1
46	. 64363	1.55368	. 66860	1.49566	. 69416	1.44060	. 72034	1.38824	14
	. 64404	1.55269	. 66902	1.49472	. 69459	1.43970	. 72078	1.38738	13
48	. 64446	$1.551 \% 0$. 6694	1.49378	. 69502	1.43881	. 72122	1.38653	12
49	6448	1.55071	. 60908	1.49284	.	1.43792	.72167	1.38568	11
50	. 64528	1.54972	. 67028	1.49190	. 6958	1.43703	. 72211	1.38484	10
	. 64569	1.54873	. 67071	1.49097	. 69631	1.43614	. 72255	1.38399	9
	. 64610	1.54774	. 67113	1.49003	. 69675	1.43525	. 72299	1.38314	8
	. 64652	1.54675	. 67155	1.48909	. 69718	1.43436	. 72344	1.38229	7
	64693	1.54576	. 67197	1.48816	. 69761	1.43347	. 72388	1.38145	6
	. 64734	1.54478	. 677239	1.48722	. 69804	1.43258	. 72432	1.38060	5
	. 647817	1.54379	. 67728	1.48629	. 69884	1.43169	. 72477	1.37976	4
	. 648178	1.54281 1.54183	${ }^{.} 67324$	1.48536 1.48442	. 699993	1.43080 1.42992	. 725	1.37891 1.37807	3 2
	. 64899	1.54085	. 67409	1.48349	. 69977	1.42903	. 72610	1.37722	1
	941	1.53986	,	1.48256	O21	1.42815	硅	1.37638	0
	Cotan	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	
		57°		56°		55°		54°	

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	36°		37°		38°		39°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 72654	1.37638	. 75355	1.32704	. 78129	1.27994	. 80978	1.23490	$\overline{60}$
1	. 72699	1.37554	. 75401	1.32624	. 78175	1.27917	. 81027	1.23416	59
2	. 72743	1.37470	. 75447	1.32544	. 78222	1.27841	. 81075	1.23343	58
3	. 72788	1.37386	. 75492	1.32464	. 78269	1.27764	. 81123	1.232\%0	$5{ }^{8}$
4	. 72832	1.37302	. 75538	1.32384	. 78316	1.27688	. 81171	1.23196	56
5	. 72887	1.37218	. 75584	1.32304	. 78363	1.27611	. 81220	1.23123	55
6	. 72921	1.37134	. 75629	1.32224	. 78410	1.27535	. 81268	1.23050	54
7	. 72966	1.37050	. 75675	1.32144	. 78457	1.27458	. 81316	1.22977	53
8	.73010 .73055	1.36967	. 75721	1.32064	. 78504	1.27382	. 81364	1.22904	52
9	. 730105	1.36883	. 75767	1.31984	. 78551	1.27306	. 81413	1.22831	51
10	. 73100	1.36800	. 75812	1.31904	. 78598	1.27230	. 81461	$1.22 \% 58$	50
11	. 73144	1.36716	.75858	1.31825	. 78645	1.27153	. 81510	1.22685	49
12	. 73189	1.36633	. 75904	1.31745	. 78892	1.2 207	. 81558	1.22612	48
13	. 73234	1.36549	. 75950	1.31666	. 78739	$1.2 \pi 001$. 81606	1.22539	47
14	. 73278	1.36466	. 75996	1.31586	. 78786	1.26925	. 81655	1.22467	46
15	. 73333	1.36383	. 76042	1.31507	. 78834	1.26849	.81703	1.22394	45
16	. 73368	1.36300	.'6088	1.31427	. 78881	1.26774	. 81752	1.22321	44
17	. 73413	1.36217	. 76134	1.31348	. 78928	1.26698	. 81800	1.22249	43
18	. 73457	1.36134	. 76180	1.31269	. 78975	1.20622	. 81849	$1.221 \% 6$	42
19	. 73502	1.3CJ51	.'62~6	1.31190	. 79022	1.26546	. 81898	1.22104	41
20	. 73547	1.35968	. 76272	1.31110	. 79070	1.26471	. 81946	1.22031	40
21	. 73592	1.35885	.76318	1.31031	. 79117	1.26395	. 81995	1.21959	39
22	. 73637	1.35802	. 76304	1.30952	. 79164	1.20319	. 8 ± 044	1.21886	38
23	. 73681	1.35719	. 76410	1.30373	. 79212	1.26244	. 82092	1.21814	37
24	. 73776	1.35637	. 76456	1.30795	. 79259	1.26169	. 82141	1.21742	36
25	. 73771	1.35554	. 76502	1.20716	. 79308	1.26093	. 82190	$1.216{ }^{\text {r }} 0$	35
26	. 73816	1.35472	. 76548	1.30637	. 79354	1.26018	. 82238	1.21598	34
2	.73861	1.35389	. 76594	1.30558	. 79401	1.25943	. 82237	1.21526	33
28	. 73906	1.35307	. 76640	1.30480	. 79449	1.25867	. 82336	1.21454	32
29	. 73951	1.35224	.76686	1.30401	. 79496	1.25702	. 82385	1.21382	31
30	. 73996	1.35142	. 76733	1.30323	. 79544	1.25717	. 82434	1.21310	30
31	. 74041	1.35060	. 76779	1.30244	. 79591	1.25642	. 82483	1.21238	29
32	. 74086	1.34978	.76825	1.30166	. 79639	1.25567	. 82531	1.21166	28
33	. 74131	1.34896	. 76881	1.30087	. 79636	1.25492	. 82580	1.21094	27
25	. 74176	1.34814	. 76918	1.30009	. 79734	1.25417	. 82629	1.21023	26
35	. $\% 4221$	1.34732	. 76964	1.29931	. $79 \% 81$	1.25343	. 820678	1.20951	25
36	. 74267	1.34650	. 77010	1.29853	. 79889	1.25268	. 82727	1.20879	24
	. 74312	1.34568	. 77057	1.29775	. 79877	1.25193	.82776	1.20808	23
38	. 74357	1.34487	. 77103	1. 220696	. 79924	1.25118	.82825	1.20736	22
3	. 74402	1.31405	. 77149	1.29618	. 79972	1.25044	. 82874	1.20665	21
40	. 74447	1.34323	7196	1.29541	. 800	1.24	. 820	1.20593	20
41	. 74492	1.34242	. 77242	1.29463	. 80067	1.24895	.829\%2	1.20522	19
42	. 74538	1.34160	. 77239	1.29385	. 80115	1.24820	. 80022	1.20451	18
43	. 74583	1.34079	. 77335	1.29307	. 80163	$1.24 \% 46$. 83071	1.20379	17
45	. 74628	1.33998	. 77382	1.29229	. 80211	1.24672	. 83120	1.20308	16
45	. 74674	1.33916	. 77428	1.29152	. 80258	1.24597	. 83169	1.20237	15
46	. 74719	1.33835	. 77475	1.290\%4	. 80306	1.24523	. 83218	1.20166	14
48	. 74764	1.33754	. 77521	1.28997	. 80354	1.24449	. 83268	1.20095	13
48	. 74810	1.33673	. 77568	1.28919	. 80402	1.24375	. 83317	1.20024	12
49	. 74855	1.33592	. 77615	1.28842	. 80450	1.24301	. 83366	1.19953	11
50	. 74	1.33511	.77661	1.28764	. 8049	1.24227	. 83415	1.19882	10
51	. 74949	1.33430	. 77708	1.28687	. 80546	1.24153	. 83465	1.19811	9
	. 74991	1.33349	. 77754	1.28610	. 80594	1.24079	. 83514	1.19740	8
	. 75037	1.83268	. 77801	1.28533	. 80642	1.24005	. 83564	1.19669	7
	. 75082	1.33187	. 77848	1.28456	. 80690	1.23931	. 83613	1.19599	6
	. 75128	1.33107	. 77895	1.28379	. 80738	1.23858	. 838682	1.19528	5
	. 75173	1.33026	. 77941	1.28302	. 80786	1.23784	. 83712	1.19457	4
	. 75219	1.32946	. 77988	1.28225	. 80834	$1.2371 C$. 83761	1.19387	3
	. 75264	1.32865	. 78035	1.28148	. 80882	1.23637	. 83811	1.19316	2
	. 75310	1.32785	. 78082	1.28071	. 80930	1.23563	. 83880	1.19246	1
60	75355	1.32704	. 78129	1.27994	. 80978	1.23490	. 83910	1.19175	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	,
		3°		兂	5	$1{ }^{\circ}$			

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	40°		41°		42°		43°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
$\overline{0}$. 83910	1.19175	. 86929	1.15037	. 90040	1.11061	. 93252	1.07237	$\overline{60}$
1	. 83960	1.19105	. 86980	1.14969	. 90093	1.10996	. 93306	1.07174	59
2	. 84009	1.19035	. 87031	1.14902	. 90146	1.10931	. 93360	1.07112	58
3	. 84059	1.18964	. 87082	1.14834	. 90199	1.10867	. 93415	1.07049	57
4	. 81108	1.18894	. 87133	1.14767	. 90231	1.10802	. 93469	1.06987	56
5	. 81158	1.18824	. 87184	1.14699	. 90304	1.10737	. 93554	1.06925	55
6 7	. 8121208	1.18754 1.18684	. 8782387	1.14632 1.14565	.90357 .90410	1.10672 1.10607	. 9357878	1.06862 1.06800	54
8	. 84307	1.18614	. 87338	1.14498	. 90463	1.10543	. 93688	1.06738	5
9	. 84357	1.18544	. 87389	1.14430	. 90516	1.104\%8	. 93142	1.06676	51
10	. 84407	$1.184 \% 4$. 87441	1.14363	. 00569	. 1.10414	. 93797	1.06613	50
11	. 84457	1.18404	. 87492	1.14296	. 90621	1.10349	. 93852	1.06551	49
12	. 84507	1.18334	. 87543	1.14229	. $906 \% 4$	1.10285	. 93906	1.06489	43
13	. 84556	1.18264	. 80595	1.14162	. 90727	1.10220	. 93961	1.06427	47
14	. 84606	1.18194	. 87646	1.14095	. 90781	1.10156	. 94016	1.06365	46
15	. 84656	1.18125	. 87698	1.14028	. 90834	1.10091	. 94071	1.06303	45
16	. 84706	1.18055	. 87749	1.13961	. 90887	1.10027	. 94125	1.06241	44
17	. 84756	1.17986	. 87801	1.13894	. 90940	1.09963	. 94180	1.06179	43
18	. 84806	1.17916	. 87852	1.13828	. 00993	1.09899	. 94235	1.06117	42
19	. 84856	1.17846	.87904	1.13761	. 91046	1.09834	. 94290	1.06056	41
20	. 84906	1.17777	. 87955	1.13694	. 91099	1.09\%\%	. 94345	1.05994	40
21	. 84956	1.17708	.88007	1.13627	. 91153	1.09706	. 94400	1.05932	39
22	. 85006	1.17638	. 88009	1.13561	. 91206	1.09642	. 94455	1.058\%	38
23	. 85057	1.17569	. 88110	1.13494	. 91259	1.09578	. 94510	1.05809	37
24	. 85107	1.17500	. 88162	1.13428	. 91313	1.09514	. 94565	1.05447	36
25	. 85157	1.17430	. 88214	1.13361	. 91366	1.09450	. 94620	1.05685	35
26	. 85207	1.17361	. 88265	1.13295	. 91419	1.09386	. 94676	1.05624	34
27	. 85257	1.17292	. 88317	1.13223	. $914 \% 3$	1.09322	. 94731	1.05562	33
28	. 85308	1.17223	. 88369	1.13162	. 91526	1.09258	. 94786	1.05501	32
29	. 85358	1.17154	. 88421	1.13096	. 91580	1.09195	. 94841	1.05439	31
30	. 85408	1.17085	88473	1.13029	. 91633	1.09131	. 94896	1.05378	30
31	. 85458	1.17016	. 88524	1.12963	. 91687	1.09067	. 94952	1.05317	29
32	. 85509	1.16947	. 88576	1.12897	. 91640	1.09003	. 95007	1.05255	28
33	. 85559	1.16878	. 88628	1.12831	. 91794	1.08940	. 95062	1.05194	27
34	. 85609	1.16809	. 88680	1.12765	. 91847	1.08876	. 95118	1.05133	26
35	. 85660	1.16741	. 88732	1.12699	. 91901	1.08813	. 95173	1.05072	25
36	. 85710	1.16672	. 88784	1.12633	. 91955	1.08749	. 95229	1.05010	24
37	. 85761	1.16603	. 88836	1.12567	. 22008	1.08686	. 95284	1.04949	23
38	. 85811	1.16535	. 88888	1.12501	. 92062	1.08622	. 95340	1.04888	22
39	. 85862	1.16466	. 88940	1.12435	. 22116	1.08559	. 95395	1.04827	21
40	. 85912	1.16398	. 88992	1.12369	. 92170	1.08496	. 95451	1.04766	20
41	. 85963	1.16329	. 89045	1.12303	. 92224	1.08432	. 95506	1.04705	19
42	. 86014	1.16261	. 89097	$1.12: 33$. 22224	1.08369	. 95562	1.04644	18
43	. 86064	1.16192	. 89149	1.121%	. 92331	1.08306	. 95618	1.04583	17
44	. 86115	1.16124	. 89201	1.12106	. 92385	1.08243	. 95673	1.04522	16
45	. 86166	1.16056	. 89253	1.12041	. 92439	1.08179	.95\%29	1.04461	15
46	. 86216	1.15987	. 89306	1.11975	. 92493	1.08116	. 95785	1.04401	14
47	. 86267	1.15919	. 89358	1.11909	. 92547	1.08053	. 95841	1.04340	13
48	. 86318	1.15851	. 89410	1.11844	. 92601	1.07990	. 95897	1.04279	12
49	. 86368	1.15783	. 89463	111778	. 92655	1.07927	. 95952	1.04218	11
50	. 86419	1.15715	. 89515	1.1	. 92709	1.07864	. 96008	1.04158	10
51	. 86470	1.15647	. 89567	1.11648	. 92763	1.07801	. 96064	1.04097	9
52	. 86521	1.15579	. 89620	1.11582	. 92817	1.07738	. 96120	1.04036	8
53	. 86572	1.15511	. 8969	1.11517	. 92272	1.06676	. 96176	1.03976	7
54	. 86623	1.15443	. 89725	1.11452	. 22926	1.06613	. 96232	1.03915	帾
55	.86674	1.15375	. 89777	1.11387	. 92980	1.07550	. 96288	1.03855	5
56	.867\%	1.15308	. 89830	1.11321	. 93034	1.0\%487	. 96344	1.03794	4
57	. 86776	1.15240	. 89883	1.11256	. 93088	1.07425	. 98400	1.03734	3
58	. 86827	1.15172	. 89935	1.11191	. 93143	1.07362	. 96457	1.036 4	2
59	. 868878	1.15104	. 89938	1.11126	. 93197	1.07799	. 96513	1.03613	1
$\underline{60}$. 86929	1.15037	. 90040	1.11061	93252	1.07237	96569	1.03553	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	
		-		${ }^{\circ}$			4		

TABLE VII.-Continued.
Natural Tangents and Cotangents.

	44°				44°				44°		
	Tang	Cotang			Tang	Cotang			Tang	Cotang	
0	. 96.569	1.035553	60	20	. 97700	1.02355	40	40	. 98843	1.01170	20
1	. 96625	1.03493	59	21	. 97756	$1.02 \% 295$	39	41	. 98901	1.01112	19
2	. 96681	1.03433	58	22	.97813	1.022336	38	42	. 98958	101053	18
3	. 96738	1.033372	57	23	.97870	1.02176	37	43	. 99016	1.00994	17
4	. 93791	1.03312	56	24	.97927	1.02117	36	44	. 99073	1.00935	16
5	.963;0	1.03252	55	25	. 97984	1.02057	35	45	. 99131	1.00876	15
6	. 96907	1.03192	54	26	. 98041	1.01998	34	46	. 99189	1.00818	14
7	. 96963	1.03132	53	27	. 98098	1.01939	33	47	. 99247	1.00759	13
8	. 97020	1.03072	53	28	. 98155	1.01879	32	48	. 99304	1.00701	12
9	.970¢6	1.03012	51	29	. 98213	1.01820	31	49	. 99362	1.00642	11
10	. 9 \%133	1.02952	50	30	.982\%	1.01761	30	50	. 99420	1.00583	10
11	. 97189	1.02892	49	31	. 98327	1.01702	29	51	. 99478	1.00525	9
12	. 97246	1.02832	48	32	. 98384	1.01642	28	52	. 99536	1.00467	
13	. 97302	1.02772	47	33	. 98441	1.01583	27	53	. 99594	1.00408	7
14	. 97359	1.02713	46	34	. 98499	1.01524	26	54	. 99652	1.00350	6
15	. 97416	1.02653	45	35	. 98556	1.01465	25	55	. 99710	1.00291	5
16	. 97472	1.02593	44	36	. 98613	1.01406	24	56	. 99768	1.00233	4
17	. 97529	1.02533	43	37	. 98671	1.01347	23	57	. 99886	1.00175	3
18	. 97586	1.02474	42	38	. 98728	1.01288	22	58	. 99884	1.00116	2
19	. 97643	1.02414	41	39	. 98786	1.01229	21	59	. 99942	1.00058	1
20	.97700	1.02355	40	40	. 98843	1.01170	20	60	1.00000	1.00000	0
	Cotang Tang			,	Cotang Tang			,	Cotang Tang		
	45°				45°				45°		

$z^{2 l}$	$8^{262 \cdot 0}$	$z \cdot 6 \angle t$	$1 \cdot \downarrow z$ ¢	(0u15to) soou	ts.tt	98914	86884	zโย์	801.69	$\bigcirc \mathrm{C}$
z^{u}	Loos.0	$0 \cdot{ }^{\circ}$	$z \cdot 6 z S$		18.0 t	$S_{\text {Igt }}$	10918	¢ $\angle \varsigma \varepsilon$	\$80.69	c8 ${ }^{\text {b }}$
z^{u}	zzoE.0	$2 \cdot 98{ }^{\text {b }}$	L.1ES		Er $\cdot 8{ }^{\text {b }}$	EStLL	tolt 8	$\varepsilon \varepsilon_{8} \varepsilon$	$090 \cdot 69$	-9 ${ }^{\text {b }}$
z^{u}	zzoE.0	$z \cdot 9{ }^{\text {b }}$	L.IES	(ouzot*o) sos u	$\varepsilon_{8}{ }^{6} 6$	L6108	tolls	$011 t$	$980 \cdot 69$	-tt
z^{u}	900\&.0	$8^{-\varepsilon} 8^{\text {b }}$	0.6zS	(02098.0) sou u	$8^{t \cdot 15}$	ot 8 z8	96506	gott	$110 \cdot 69$	- \square^{\square}
z^{u}	9<6z*o	- $06 \angle$	S-SzS		90.ES	$\varepsilon_{8} \varepsilon^{\text {¢ }} 8$	LLEE6	$6 z \angle b$	L86.89	$\bigcirc{ }^{\circ 1}$
z^{24}	z\&6z*o	$8 \cdot 1 /{ }^{\circ}$	0.915		LS.ts	こと8 ${ }^{\text {c }}$	ttog6	6 LoS	†96.89	${ }_{08} \mathcal{E}^{1}$
z^{u}	£ $\angle 8 \%^{\circ} \circ$		L.Sos	(ouLEE.0) sou u	zo.9S	ES 106	£6886	19tS	1t6.89	-9£
8^{u}	-08z*o	L-OSb	o.86t	($0 \sim 02 \varepsilon \cdot 0$) Sov u	-t. 25	£LEz6	zzoror	1885	816.89	$\bigcirc \downarrow \mathcal{L}$
z^{u}	Silz'o	$8.98 t$	8. $21+$		14.85	$18{ }^{\text {tot6 }}$	LzEEOr	$8^{\dagger} \varepsilon_{9}$	L68.89	๐ \sim E
z^{u}	L1920	- ¢ı ${ }^{\text {t }}$	-09 ${ }^{\text {b }}$	(0u88**) sos u	S6.65	9<t96	LoSSor	6989	¢ 4889	
- $^{\text {-3x }}$		*วมว ${ }^{\text {N }}$ uI	${ }^{\text {spre }}{ }_{\text {A }} \mathrm{u}^{\text {I }}$	${ }^{-1010}{ }^{\text {a }}$	-so! ${ }^{\text {d }}$ uI		${ }^{\text {spre }}{ }_{\text {A }}$ uI	-sว!w		
								-urel јo эp!S јо чน누วт		-

'IIIA GTGVL
TABLE IX．

		-	$0 \times \infty$		くれやかO Qvivivio	＊∞ Q ${ }^{\circ}$ ตッズメン
	\％		OOMM థ్లైల్లైల్ల	ヘnल๐ a 	－○○のに 	－ロNAN
	잉	－MMA～ 		 率安的以	ヘッササ～ ทํํ우웅	かのいへ 8ธ்ต்ல்ல்
	19 8. 8	$00+7+$ 		～ッ Mo n 	ロッ～мm ถ๐๐ㅇํํㅜㅗ	○ \quad 毋 0 ○ ベウベペ
			に 000 に 4in ig		 	○ーのッм
	O \％ O．	ผ่ บ่ํํํํ	のはNへに ヘ่ถ่ํํํ	ッロッッタ さべがが	mo O N m がゅめかの	ーヘッド
	\％	$\bigcirc \times+\infty$ 	＋Mono 人完がが	＋～no＋ 		$\cdots \infty$ mo a 우우ㅇㅜㅜㅜㅜ
	$\stackrel{10}{0}$	Nmotr ทั่ ทั๗	∞ ○○○．．．	คヘッMm 	－$+\infty$ ○ $\dot{\sim}$ 	
	$\stackrel{9}{0}$	ON No No N	மio $\dot{\circ}$ 우쑤쑤	+ ヘット～ 	mam＾a స్ల్లెల్లైల్ల	
	$\stackrel{\text { Q }}{\text { ¢ }}$	$\rightarrow-\infty$ 				
	$\stackrel{-1}{0}$				ตo ヘisioutio	
	응	$\infty \rightarrow \infty$ no 		+00 mo 	ตnํㅜㄴ 	Nomm．
	O					
¢			$0 \geq \infty, 0$		Q $\# 10 \infty 0$ 	$+\infty \mathrm{CNO}$

TABLE XI.
Volumes by the Prismoidal Formula. § 320.

$\begin{aligned} & \text { 䔍 } \\ & 0 \\ & 0 \end{aligned}$	Heights.										Corrections for tenths in height.			
	1	2	3	4	5	6	7	8	9	10				
1	0	1	1	1	2	2	2	2	3	3	. 1	0		
2	1	1	2	2	3	3	4	5	6	6	. 2	0		
3	1	2	3	4	5	6	6	7	8	9	. 3	0		
4	1	2	4	5	${ }_{8}$	7	9	10	11	12	. 4	1		
5	-2	-3	-5	-6	-8	-9	-11	-12	-14	-15	. 5	1		
6	2	4	6	7	9	11	13	15	17	19	. 6	1		
7	2	4	${ }_{7}^{6}$	9	11	13	15	17	19	22	. 7	1		
8	$\stackrel{2}{2}$	5	7	10	12	15	17	20	22	25	. 8	1		
9	3	6	8	11	14	17	19	22	25	28	. 9			
10	3	6	9	12	15	19	22	25	28	31	. 9			
11	3	7	10	14	17	20	24	27	31	34	. 1			
12	4	7	11	15	19	22	26	30	33	3π	. 2	1		
13	4	8	12	16	20	24	28	32	36	40	. 3	1		
14	4	9	13	17	22	26	30	35	39	43	. 4			
15	-5	-9	-14	-19	-23	-28	-32	-37	-42	-46	. 5	2		
16	5	10	15	20	25	30	35	40	44	49	. 6	3		
17	5	10	16	21	26	31	37	42	47	52	. 7	3		
18	6	11	17	22	28	33	39	44	50	56	. 8	4		
19	6	12	18	23	29	35	41	4	53	59	. 9			
20	6	12	19	25	31	37	43	49	56	62				
21	7	13	19	${ }_{26}^{26}$	32	39	45	52	58	65	-	,		
22	7	14	20	27	34	41	48	54	61	68	. 2			
23	7	14	21	28	- 35	43	50	57	64	71	. 3	2		
24	7	15	22	30	${ }^{37}$	44	52	59	67	I4	. 4			
25	-8	-15	-23	-31	-39	-46	-54	-62	-69	-77	- 5	4		
${ }_{27}^{26}$	8	16	24	32 33	40	48	56 58	64	${ }^{7}$	80	. 6	5		
27	8	17	25	33	42	50	58	67	75	83	. 7	5		
28	9	17	26	35	43	52	60	69	78	86	. 8	6		
29	9	18	27	$3{ }^{36}$	45	54	63	\%	81	90	. 9			
80	9	19	28	37	46	56	65	74	83	93				
31	10	19	29	38	48	57	67	77	86	96	. 1			
32	10	20	30	40	49	59	69	\%9	89	99	. 2	2		
33	10	20	31	41	51	61	71	81	92	102	. 3	3		
34	10	21	21	42	52	63	73	84	94	105	. 4			
35	-11	-22	-32	-43	-54	-65	-76	-86	-97	-108	- 5	5		
36	11	22	33	44	56	67	78	89	100	111	. 6			
37	11	23	31	46	57	69	80	91	103	114	. 7			
38	12	23	3.5	47	59	70	82	94	106	11\%	. 8			
39	12	24	36	48	60	\%2	84	96	108	120	. 9	10		
40	12	25	37	49	62	74	86	99	111	123				
41	13	25	88	51	63	76	89	101	114	127	. 1			
42	13	26	39	5.	65	78	91	104	117	130	. 2	3		
43	13	27	40	53	66	80	- 93	106	119	133	. 3			
44	-14	27 -28	41 -42	54 -56	68 -69	81 -83	95 -97	-109	129	136	. 4	${ }_{\sim}^{6}$		
46	-14	-28	-43	-56	-69	-83 85	-97 99	-111	-125 128	-139	. 5			
47	15	29	44	58	7	87	102	116	131	145	. 7	10		
48	15	30	44	59	74	89	104	119	133	148	. 8	11		
49	15	30	45	60	76	91	106	121	136	151				
50	15	31	46	62	77	93	108	123	139	154				
	1	2	3	4	5	6	7	8	9	10				
	. 1	. 2	$\cdot 3$	4	. 5	. 6	. 7	. 8	$\cdot 9$	Corrections for tenths in width.				
	0	0	0	1	1	1	1	1	1					

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

$\begin{aligned} & \text { 㡙 } \\ & \stackrel{0}{0} \end{aligned}$	Heights.										Corrections for tenths in height.			
	1	2	3	4	5	6	7	8	9	10				
51	16	31	47	63	79	94	110	126	142	157	. 1	2		
52	16	32	48	64	80	96	112	128	144	160	. 2	3		
53	16	33	49	65	82	98	115	131	147	163	$\cdot 3$	5		
54	17	33	50	67	83	100	117	133	150	167	. 4	7		
55	-17	-34	-51	-68	-85	-102	-119	-136	-153	-170	. 5	8		
56	17	35	52	69	86	104	121	138	156	173	. 6	10		
57	18	35	53	70	88	106	123	141	158	-176	. 7	12		
58	18	36	54	72	90	107	125	143	161	179	. 8	14		
59	18	36	55	73	91	109	127	146	164	182	. 9	15		
60	19	37	56	74	93	111	130	148	167	185				
61	19	38	56	75	94	113	132	151	169	188	. 1	2		
62	19	38	57	77	96	115	134	153	172	191	. 2	4		
63	19	39	58	78	97	117	136	156	175	194	$\cdot 3$			
64	20	40	59	79	99	119	138	158	178	197	. 4			
65	-20	-40	-60	-80	-100	-120	-140	-160	-181	-201	. 5	10		
66	20	41	61	81	102	122	143	163	183	204	. 6	12		
67	21	41	62	83	103	124	145	165	186	207	. 7	14		
68	21	42	63	84	105	126	147	168	189	210	. 8	16		
69	21	43	64	85	106	128	149	170	192	213	. 9	18		
70	22	43	65	86	108	130	151	173	194	216	. 9			
71	22	44	66	88	100	131	153	175	197	219	. 1	2		
72	22	44	67	89	111	133	156	178	200	222	.2	5		
73	23	45	68	90	113	135	158	180	203	225	$\cdot .3$	7		
74	23	46	69	91	114	137	160	183	206	228	. 4	9		
75	-23	-46	-69	-93	-116	-139	-162	-185	-208	-231	. 5	12		
76	23	47	70	94	117	141	164	188	211	235	. 6	14		
77	24	48	71	95	119	143	166	190	214	238	. 7	16		
78	24	48	72	96	120	144	169	193	217	241	. 8	19		
79	24	49	73	98	122	146	171	195	219	244	. 9	21		
80	25	49	74	99	123	148	173	198	222	247				
81	25	50	75	100	125	150	175	200	225	250	. 1	8		
82	25	51	76	101	127	152	177	202	228	253	. 2	5		
83	26	51	77	102	128	154	179	205	231	256	$\cdot 3$	8		
84	26	52	78	104	130	156	181	207	233	259	. 4			
85	-26	-52	-79	-105	-131	-157	-184	-210	-236	-262	. 5	13		
86	27 27	5	80	107	133 134	159 161	186 188	212 215	239 242	265 269	.6	16		
88	27	54	81	109	136	163	190	217	244	272	. 8	21		
89	$\stackrel{27}{ }$	55	82	110	137	165	192	220	247	275	. 9	24		
90	28	56	83	111	139	167	194	222	250	278				
91	28	56	84	112	140	169	197	225	253	281	. 1	8		
92	28	57	85	114	142	170	199	227	256	284	. 2	6		
93	29	57	86	115	144	172	201	230	258	287	.3	9		
94	29	58	87	116	145	174	203	232	261	290	. 4	12		
95	-29	-59 -59	-88 -89	-117	-147	-176	-205	-235	-264	-293		15		
96 97	30 30	59 60	89 90	119 120	148	178	207	237	267	296	. 6	18		
98	30	60	90	120	150	180 181	210 212	240 242	269 272	$\stackrel{299}{ }$.7	${ }_{23}^{21}$		
99	31	61	92	122	153	183	214	244	$2{ }_{2} 2$	302 306				
100	31	62	93	123	154	185	216	247	278	309				
	1	2	3	4	5	6	7	8	9	10				
	. 1	. 2	$\cdot 3$. 4	. 5	. 6	-7	. 8	$\cdot 9$	Corrections for tenths in width.				
	0	0	0	1	1	1	1	1	1					

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

$\begin{aligned} & \text { 号 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Heights.										Corrections for tenths in height.	
	11	12	13	14	15	16	17	18	19	20		
1	3	4	4	4	5	5	5	${ }^{6}$		6	. 1	0
2	7	7	8		9	10	10	11	12	12	.2	0
3	10	11	12	13	14	15	16	17	18	19	$\cdot 3$	0
4	14	15	16	17	19	20	21	22	-23	-25	- 4	1
5	-17	-19	-20	-22	-23	-25	-26	-28	-29	-31	. 5	1
6	20	${ }_{28}^{22}$	24	26	28	30	31	33	35	37	. 6	
7	24	26	28	30	32	35	37	39	41	43	.7	
8	27	30	32	35	37	40	42	44	47	49	. 8	
9	31	33	36	39	42	44	47	50	53	56	$\cdot 9$	1
10	34	37	40	43	46	49	52	56	59	62		
11	37	41	44	48	51	54	58	61	65	68	. 1	0
12	41	44	48	52	56	59	63	67	70	74	. 2	1
13	44	48	52	56	60	64	68	77	76	80	$\cdot 3$	1
14	48	52	56	60	65	69	73	78	82	86	. 4	2
15	-51	-56	-60	-65	-69	-74	-79	-83	-88	-93	-5.	2
16	54	59	64	69	74	\%9	84	89	94	99	. 6	3
17	58	63	68	73	79	84	89	94	100	105	.7	3
18	61	67	72	78	83	89	94	100	106	111	. 8	4
19	65	70	76	82	88	94	100	106	111	117	. 9	4
20	68	74	80	86	93	99	105	111	117	123		
21	71	78	84	91	97	104	110	117	123	130	. 1	1
22	75	81	88	95	102	109	115	122	129	136	.2	2
23	78	85	92	99	106	114	121	128	135	142	$\cdot 3$	2
24	81	89	96	104	111	119	126	133	-141	. 148	. 4	
25	-85	-93	-100	-108	-116	-123	-131	-139	-147	-154	.5	4
$\stackrel{26}{27}$	88	96 100	104	112	120	128	136 142	144 150	152 158	160 167	. 6	5
28	95	104	112	121	130	138	147	156	164	173	. 88	${ }_{6}$
29	98	10%	116	125	134	143	152	161	170	179	. 9	7
30	102	111	120	130	139	148	15%	167	176	185		
31	105	115	124	134	144	153	163	172	182	191	. 1	1
32	109	119	128	138	148	158	168	178	188	198	. 2	2
33	112	122	132	143	153	163	173	183	194	204	$\cdot 3$	3
34	115	126	136	147	157	168	178	189	199	210	. 4	
35	-119	-130	-140	-151	-162	-173	-184	-194	-205	-216		
36	122	133	144	156	167	178	189	200	211	222	. 6	6
37	126	137	148	160	171	183	194	206	217	228	. 7	8
38	129	141	152	164	176	188	199	211	223	235	. 8	
39	132	144	156	169	181	193	205	217	229	241	$\cdot 9$	10
40	136	148	160	173	185	198	210	222	235	247		
41	139	152	165	17%	190	202	215	228	240	253	. 1	1
42	143	156	169	181	194	207	220	233	246	259	. 2	3
43	146	159	173	186	199	212	226	239	252	265	$\cdot 3$	4
44	149	163	177	190	204	217	231	244	258	${ }_{2 \uparrow}^{27}$	-4	
45	-153	-167	-181	-194	-208	-222	-236	-250	-264	-278	. 5	
46	156	170	185	199	213	227	241	256	270	284	. 6	8
47	160	174	189	203	218	232	247	$\stackrel{261}{ }$	276	290	.7	10
48	163	178	193	207	222	237	${ }_{257}^{252}$	267	$\stackrel{281}{281}$	296	. 8	11
49	166	181	197	212	227	242	257	$\underset{278}{272}$	$\stackrel{287}{28}$	3	$\cdot 9$	
50	170	185	201	216	231	247	262	278	293	309		
	11	12	13	14	15	16	17	18	19	20		
	. 1	. 2	. 3	. 4	. 5	. 6	$\cdot 7$. 8	. 9			
	0	1	1	2	2	3	3	4	4			

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

$\begin{aligned} & \text { 号 } \\ & \frac{0}{0} \\ & \hline \end{aligned}$	Heights.										Corrections for tenths in height.	
	11	12	13	14	15	16	17	18	19	20		
51	173	189	205	220	236	252	268	283	299	315	. 1	2
52	177	193	209	225	241	257	273	289	305	321	. 2	3
53	180	196	213	229	245	262	278	294	311	327	. 3	5
54	183	200	217	233	250	267	283	200	317	333	. 4	7
55	-187	-204	-221	-238	-255	$-2 \% \%$	-289	-306	-323	-340	. 5	
56	190	207	225	242	259	$2{ }^{27}$	294	311	328	346	. 6	10
57	194	211	229	246	264	281	299	317	334	352	.7	12
58	197	215	233	251	269	286	304	322	340	358	. 8	14
59	200	219	237	255	${ }^{273}$	291	310	328	346	364	.9	15
60	204	222	241	259	278	296	315	333	352	$2 \% 0$		
61	207	226	245	264	282	301	320	339	358	377	. 1	2
62	210	230	249	268	287	306	325	344	364	383	.2	4
63	214	233	253	27\%	292	311	331	350	369	389	$\cdot 3$	6
64	217	237	257	277	296	316	336	356	$3{ }^{375}$	395	. 4	8
65	-221	-241	-261	-281	-301	-321	-341	-361	-381	-401	. 5	10
66	224	244	265	285	306	326	346	367	387	407	. 6	12
67	227	248	269	290	310	331	352	372	393	414	.7	14
68	231	252	273	294	315	336	357	378	399	420	. 8	16
69	234	256	274	298	319	341	362	383	405	426	. 9	18
70	238	259	281	302	324	346	367	389	410	432		
71	241	263	285	307	329	351	373	394	416	438	. 1	2
72	244	267	289	311	333	356	378	400	422	444	.2	5
73	248	270	293	315	338	360	383	406	428	451	.3	7
74	251	274	297	320	343	36.5	388	411	434	457	. 4	9
75	-255	-278	-301	-324	-347	-3i0	-394	-417	-140	-463	$\cdot 5$	12
76	258	281	305	$3 \geqslant 8$	335	375	399	422	446	469	. 6	14
77	261	285	309	333	356	380	40°	428	452	475	$\cdot 7$	16
78	265	289	313	337	361	385	409	433	457	481	. 8	19
79	268	293	317	341	366	390	415	439	463	488	. 9	21
80	272	296	321	346	$3 \% 0$	395	420	444	469	494		
81	275	300	325	350	375	400	425	450	475	500	. 1	3
82	278	304	329	354	380	405	430	456	481	506	. 2	5
83	282	307	333	359	384	410	435	461	487	512	$\cdot 3$	8
84	285	311	337	363	389	415	441	467	493	519	. 4	10
85	-289	-315	-341	-367	-394	-420	-446	$-4 \% 2$	-498	-525		13
86	292	${ }^{319}$	345	${ }^{372}$	398	425	451	$4 \% 8$	504	531	. 6	16
87	29.5	322	349	376	403	430	456	483	510	537		18
88	299	326	353	380	407	435	462	489	516	543	. 8	21
89	303	3.30	${ }^{357}$	385	412	440	467	494	522	549	. 9	24
90	306	333	361	389	417	444	$4{ }^{4}$	500	528	556		
91	309	337	365	393	421	449	477	506	- 534	562	. 1	3
92	312	341	369	398	426	454	483	511	540	568	. 2	6
93	316	344	373 377	402	431	459	488	517	545	574	$\cdot 3$	9
94	319	348	377	406	435	464	493	522	551	580	. 4	12
95	-323	-352	-381	-410	-440	-469	-498	-528	-557	-586		15
96	326	356	385	415	444	474	504	533	563	593	. 6	18
97	329	359	389	419	449	479	509	539	569	599	. 7	21
98	${ }_{3} 33$	363	${ }^{393}$	423	454	484	514	544	575	605	. 8	${ }_{2}^{23}$
99	336	367	397	428	458	489	519	550	581	611		26
100	540	$3{ }^{2} 0$	401	432	463	494	525	556	586	617		
	11	12	13	14	15	16	17	18	19	20		
	. 1	2	$\cdot 3$. 4	. 5	. 6	7	. 8	$\cdot 9$			
	0	1	1	2	2	3	3	4	4			

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

n号0	Heights.										Corrections for tenths in height.			
	21	22	23	24	25	26	27	28	29	30				
1	6	7	7	7	8	8	8	9	9	-	. 1	0		
2	13	14	14	15	15	16	17	17	18	19	. 2	0		
3	19	20	21	22	23	24	25	26	27	28	$\cdot .3$	0		
4	26	27	28	30	31	32	33	35	36	37	. 4	1		
${ }_{6}^{5}$	-32 -39	-34 41	$\begin{array}{r}-35 \\ \hline 43\end{array}$	$\begin{array}{r}-37 \\ \hline 4\end{array}$	-39 46	$\begin{array}{r}-40 \\ \hline 48\end{array}$	-42 -50	-43	-45 -54	-46 -56	. .6	1		
7	45	48	50	52	54	56	58	60	64	56	. 6	1		
8	52	54	57	59	62	64	67	69	72	76	$\cdot 7$	1		
9	58	61	64	67	69	72	75	78	81	83		1		
10	65	68	71	74	77	80	83	86	90	93		1		
11	71	75	78	81	85	88	92	95	98	102	. 1	0		
12	78	81	85	89	93	96	100	104	107	111	. 2	1		
13	84	88	92	96	100	114	108	112	116	120	. 3	1		
14	91	95	99	104	108	112	117	121	125	130	. 4	2		
15	-97	-102	-106	-111	-116	-120	-125	-130	-134	-139		2		
16	104	109	114	119	123	128	133	138	143	148	. 6	3		
17	110	115	121	126	131	186	142	147	152	157	. 7	3		
18	117	122	128	133	139	144	150	156	161	167	. 8	4		
19	123	129	135	141	147	152	158	164	170	176	. 9	4		
20	130	136	142	148	154	160	167	173	179	185				
21	136	142	149	156	162	169	175	181	188	194	1	1		
22	143	149	156	163	170	177	183	190	197	204	.2	2		
23	149	156	163	170	177	185	192	199	206	213	$\cdot 3$			
24	156	163	170	-178	185 -193	193	-200	- 207	215	222	-4	3		
25	-162	-170 17%	-177 185	-185	-193 -201	-201 -209	-208	-216 -225	-224 -233	-231		4		
${ }_{27}^{26}$	169 175	177 183	185 192	193	201	209	217 225	225	233 242	241 250	. 6	5 5		
28	181	190	199	207	216	225	233	242	251	259	. 8	${ }_{6}$		
29	188	197	206	215	$2 \% 4$	233	R42	251	260	269	. 9	7		
30	194	204	213	22.2	231	241	250	259	269	278				
31	201	210	220	230	239	249	258	268	277	287	. 1			
32	207	217	227	237	247	257	267	277	286	296	. 2	2		
33	214	224	234	244	255	265	275	285	295	306	$\cdot 3$	3		
34	220	231	241	25.2	262	273	283	294	304	315	. 4	4		
35	-227	-238	-248	-259	-2\%0	-281	-292	-302	-313	-324		5		
36	233	244	256	267	278	289	300	311	322	333	. 6	6		
37	240	251	263	274	285	297	308	320	331	343	$\cdot 7$	8		
38	246	258	270	281	293	305	317	3328	340	352	. 8	9		
39	253	265	277	289	301	313	325	337	349	361	. 9	10		
40	259	272	284	296	309	321	333	346	358	370				
41	${ }_{272}^{266}$	${ }_{285}^{278}$	291	304 311	316 324	329 337	342 350	354 363	367 376	380 389	I	3		
43	$2 \% 9$	292	2305	319	${ }_{3}^{324}$	${ }_{345}^{337}$	350	363 372 3	376 385	389 398	. 2	3 4		
44	285	299	312	326	340	353	367	380	394	407	. 4	6		
45	-292	-306	-319	-333	-347	-361	-375	-389	-403	-417	. 5	7		
46	298	312	327	341	355	369	383	398	412	426	. 6	8		
47	305	319	334	348	363	377	392	406	421	435	. 7	10		
48	311	326	341	356	370	385	400	415	430	444	. 8	11		
49	318	333	348	363 370	378 386	393	408	423	439	454	. 9	13		
50	324	340	355	370	386	401	417	432	448	463				
	21	22	23	24	25	26	27	28	29	30				
	1	. 2	$\cdot 3$	4	. 5	. 6	7	. 8	. 9	Corrections for tenths in width.				
	1	2	2	3	4	5	5	6	7					

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

$\begin{aligned} & \text { 雨 } \\ & \\ & \hline \end{aligned}$	Heights.										Corrections for tenths in height.			
	21	22	23	24	25	26	27	28	29	30				
51	331	346	362	378	394	409	425	441	456	472	. 1	2		
52	337	353	369	385	401	417	433	449	465	481	.2	3		
53	344	360	376	393	409	425	442	458	474	491	$\cdot 3$	5		
54	350	367	383	400	417	433	450	467	483	500	. 4	7		
55	356	-373	-390	-407	-424	441	-458	-475	-492	-509	. 5	8		
56	363	380	398	415	432	449	467	484	501	519	. 6	10		
57	369	387	405	422	440	457	475	493	510	528	.7	12		
58	376	394	412	430	448	465	483	501	519	537	. 8	14		
59	382	401	419	437	455	473	492	510	528	546	. 9	15		
60	389	407	426	444	463	481	500	519	537	556				
61	395	414	433	452	471	490	508	527	546	565	. 1	2		
62	402	421	440	459	478	438	517	536	555	574	. 2	4		
63	408	428	447	467	486	506	525	544	564	583	$\cdot 3$	6		
64	415	435	454	474	494	514	533	553	573	593	- 4	8		
65	-421	-441	-461	-481	-502	-522	-542	-562	-582	-602	. 5	10		
66	428	448	469	489	509	530	550	570	591	611	. 6	12		
67	434	455	476	496	517	538	558	579	600	620	$\cdot 7$	14		
68	441	462	483	504	525	546	567	588	609	630	. 8	16		
69	447	469	490	511	532	554	575	596	618	639	. 9	18		
70	454	475	497	519	540	562	583	605	627	648				
71	460	482	504	526	548	570	592	614	635	657	1	2		
72	467	489	511	533	556	578	600	622	644	667	. 2	5		
73	473	496	518	541	563	586	608	631	653	676	$\cdot 3$	7		
74	480	502	525	548	571	594	617	640	662	685	- 4	9		
75	-486	-509	-532	-556	-579	-601	-625	-648	-671	-694	. 5	12		
76	493	516	540	563	586	610	633	657	680	704	. 6	14		
78	499	523	547	570	594	618	642	665	689	713	. 7	16		
78	506	530	554	578	602	626	650	674	698	722	. 8	19		
79	512	536	561	585	610	634	658	683	707	731	. 9	21		
80	519	543	568	593	617	642	667	691	716	741				
81	525	550	575	600	625	650	675	700	725	750	. 1	3		
82	531	557	582	607	633	658	683	709	734	759	. 2	8		
83	538	564	589	615	640	666	692	717	743	769	$\cdot 3$	8		
84	544	570	596	$6: 2$	648	674	700	726	752	778	- 4	10		
85	-551	-577	-603	-630	-656	-682	-708	-735	-761	-787	. 5	13		
86	557	584	610	637	664	690	717	743	770	796	. 6	16		
87	564	591	618	644	671	698	725	752	779	806	$\cdot 7$	18		
88	570	598	625	652	679	706	733	760	788	815	. 8	21		
89	577	604	632	659	687	714	742	769	797	824	. 9	24		
90	583	611	639	667	694	722	750	777	806	833				
91	590	618	646	674	702	730	758	786	815	843	I			
92	596	625	653	681	710	738	767	795	823	852	. 2	6		
93	603	631	660	689	718	746	775	804	832	861	$\cdot 3$	9		
94	609	638	667	696		754	783	812	-841	870	- 4	12		
95	-616	-645	-674	-704	-733	-762	-792	-821	-850	-880	. 5	15		
96	622	652	681	711	741	770	800	830	859	889	. 6	18		
97	629	659	689	719	748	778	808	838	868	898	. 7	$\stackrel{21}{21}$		
98	435	665	696	720	756	786	817	847	877	907	. 8	23		
99	642	672	703	733	764	794	825	856	886	917	. 9	26		
100	648	679	710	741	772	802	833	864	895	926				
	21	22	23	24	25	26	27	28	29	30				
	. 1	. 2	$\cdot 3$. 4	$\cdot 5$. 6	. 7	. 8	. 9	Corrections for tenths in width.				
	1	2	2	3	4	5	5	6	7					

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

$\stackrel{\text { ¢ }}{\text { ¢ }}$						ghts.						
	31	32	33	34	35	36	37	38	39	40		
	10	10	10	10	11							
$\overline{3}$	19 29	30	${ }_{31}^{20}$	21 31	${ }_{3}^{2 \cdot}$	22 3 3	123 34	${ }^{23}$	24	25	. 2	0
4	38	40	41	42	${ }_{43}$	${ }_{44}$	${ }_{46} 44$	$\begin{aligned} & 35 \\ & 47 \end{aligned}$	36 48	37 49 49	${ }^{4} 4$	1
5	-48	-49	-51	- 58	-54	- ${ }^{44}$	- ${ }^{46}$	-59	-60	- ${ }^{49}$.4	1
${ }_{7}$	${ }^{57}$	59	${ }_{51}^{61}$	${ }_{-3}^{63}$	${ }^{65}$	${ }^{67}$	68	70	72	${ }^{7}$. 6	1
8	${ }_{77}^{67}$	$\stackrel{69}{79}$	${ }_{81}^{71}$	73 84 84	${ }^{76}$	78 89	80 91	82	84 96	${ }_{97}^{86}$. 8	1
9	86	89	92	94	97	100	103	106	108	111	. 9	1
10	96	99	102	105	108	111	114	117	120	123		
11	105	109	112	115	119	122	126	129	132	136	. 1	
${ }_{13}^{12}$	115	119 128	${ }_{13,2}^{123}$	126 136	130 140 1	133 144 1	137	141	114	148	2	1
14	134	138	${ }_{143}^{133}$	${ }_{14 \sim}^{136}$	151	144 156	148	152 164 168	156 169	160 173	$\stackrel{3}{4}$	${ }_{2}^{1}$
15	-144	-148	-153	-157	-162	-167	-171	-176	-181	-185	- 5	2
16	${ }^{153}$	158	163	168	173	178	183	188	193	198	. 6	3
18	${ }_{173}^{163}$	168	173	178	18.3	189	${ }^{194}$	199	205	210	. 7	3
. 18	182	1188 188	194	189 199	${ }_{205}^{194}$	211	${ }_{217}^{206}$	211 223	217 29	${ }_{235}^{222}$. 8	4
20	191	198	204	210	216	222	238	235	241	247	. 9	
21	201	207	214	220	227	233	240	246	253	259	I	
${ }_{23}^{22}$	210 220	${ }_{2}^{217}$	\% 24	${ }_{241}^{231}$	${ }_{248}^{238}$	$\stackrel{24}{246}$	${ }_{263}^{251}$	${ }_{2}^{258}$	${ }_{2}^{265}$	272	. 2	${ }_{2}^{2}$
24	230	237	244	$\stackrel{253}{24}$	$\stackrel{2}{259}$	${ }_{267}^{256}$	274	${ }_{281}^{280}$	$\stackrel{287}{289}$	${ }_{296}^{284}$. 3	${ }_{3}^{2}$
25	239	24%	255	26^{3}			28		${ }^{301}$	309		
${ }_{2}^{26}$	$\stackrel{249}{298}$	${ }_{6}^{257}$	265	${ }_{28}^{273}$	281	289	$\stackrel{297}{ }$	${ }_{3}^{305}$	${ }^{313}$	321	. 6	5
28	268	$2{ }^{2} 7$	285	294	302	311	${ }_{3 * 0}^{308}$	328	${ }_{337}$	${ }_{346}$. 8	${ }_{6}^{5}$
29	${ }_{287}^{277}$	286	${ }_{3}^{295}$	304	313	3\%	${ }^{331}$	340	349	3588	. 9	7
30	287	296	306	315	3\%t	333	343	352	361	370		
31	297	306	316	325	335	344	354	364	373	383	. 1	
${ }_{33}$	316	${ }_{326}$	326 336 3	-336	346 356	-	${ }^{365}$	${ }_{387}^{375}$	-	${ }^{395}$. 2	$\stackrel{2}{3}$
34	3:5	336	346	357	367	$3{ }^{3} 8$	388	399	409	420	. 4	4
35	335	346	356	367	378	389	400	410	421	432		5
36	344	${ }^{356}$	${ }^{367}$	${ }^{378}$	${ }^{389}$	400	411	422	433	444	. 6	${ }_{8}^{6}$
${ }_{38}^{37}$	354 364	365 375	377 387	388 399		${ }_{422}^{411}$	434	${ }_{446}^{434}$	$4{ }_{4}^{457}$	${ }_{469}$. 78	${ }_{9}^{8}$
39	373	385	897	409	421	433	445	457	469	481	. 9	10
40	383	395	407	420	432	444	457	469	481	494		
41	392	405	418	430	443	456	468	481	494	506		
43	411	$4{ }_{4}^{45}$	${ }_{438}$	441	454	467 478	489	493 504	506 518	519	. 2	3 4 4
44	421	435	448	462	475	489	502	516	530	543	${ }^{-3}$	
45	431	444	458	472	487	-500	-514	528	542	-556	- 5	7
46	440	454	${ }_{4}^{469}$	483	497	511	525	540	554	568	. 6	8
48	459	${ }_{474}^{464}$	${ }_{489}$	493	508 519	522	537	551 563	年 566	580 593	. 78	10
49	469	484	499	514	529	544	560	575	590	605		
50	478	491	509	525	540	556	571	586	60.2	617		
	31	32	33	34	35	36	37	38	39	40		
	. 1	. 2	$\cdot 3$	$\cdot 4$. 5	. 6	. 7	. 8	-9	Corrections for tenths in width.		
	1	2	3	4	5	6	8	9	10			

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

	Heights.										Corrections for tenths in height.			
	31	32	33	34	35	36	37	38	39	40				
51	488	504	519	535	551	567	582	598	614	630	. 1	2		
52	498	514	530	546	562	5 58	594	610	626	642	.2	3		
53	507	523	540	556	573	589	605	622	638	654	$\cdot 3$	5		
54	517	533	550	567	583	600	617	633	650	667	. 4	7		
55	- 526	-543	-560	-577	-594	-611	-628	-645	-662	-679	- 5	8		
56	536	553	$5{ }_{5} 0$	588	605	623	640	657	674	691	. 6	10		
57	545	563	581	598	616	633	651	669	686	704	. 7	12		
58	555	573	591	609	627	644	662	680	698	716	. 8	14		
59	565	583	601	619	637	656	674	692	710	728	. 9	15		
60	574	593	611	630	648	667	685	704	722	741				
61	584	602	621	640	659	678	697	715	734	753	. 1	2		
62	593	612	631	651	670	689	ro8	727	746	765	. 2	4		
63	603	622	642	661	681	700	719	739	758	778	$\cdot 3$	6		
64	612	632	652	672	691	711	731	751	770	790	. 4	8		
65	-612	-642	-662	-682	-702	-722	-742	-762	-782	-802	. 5	10		
66	631	652	$6{ }^{2} 2$	693	713	733	754	74	794	815	. 6	12		
67	641	662	632	703	774	744	765	786	806	827	.7	14		
68	651	$6 \pi 2$	693	714	735	756	777	798	819	840	. 8	16		
69	660	681	${ }_{7} 7$	724	745	767	788	809	831	85.2	.9	18		
70	$6{ }^{0} 0$	691	713	735	756	$7 \% 8$	799	821	843	864				
71	679	901	723	745	767	789	811	833	855	877	. 1	2		
72	689	711	733	756	778	800	822	844	867	889	. 2	5		
73	698	721	744	766	789	811	834	856	879	901	$\cdot 3$	7		
74	708	$73 i$	754	777	799	822	845	868	891	914	. 4	9		
75	- 718	-741	-764	- 787	-810	-833	-856	-880	-903	-926	. 5	12		
76	727	751	\%ri4	798	821	844	868	891	915	938	. 6	14		
77	737	760	784	808	832	856	879	903	927	951	. 7	16		
78	746	770	794	819	843	867	891	915	939	963	. 8	19		
79	756	\%80	805	829	853	878	902	927	951	975	. 9	21		
80	765	790	815	840	864	889	914	938	963	988				
81	\%75	800	825	850	875	900	925	950	975	1000	. 1	3		
82	785	810	835	860	886	911	936	962	987	1012	. 2	5		
83	794	820	845	871	897	922	948	973	999	1025	. 3	8		
84	804	830	856	881	907	933	959	985	1011	1037	. 4	10		
85	-813	-840	-866	-892	-918	-944	-971	-99\%	-1023	-1049	. 5	13		
86	823	849	876	902	929	956	982	1009	1035	1062	. 6	16		
87	832	859	886	913	940	967	994	1020	1047	1074	. 7	18		
88	842	869	896	923	951	978	1005	1032	1059	1086	. 8	21		
89	852	879	906	934	961	989	1016	1044	1071	1098	. 9	24		
90	861	889	917	944	972	1000	1028	1056	1083	1111				
91	871	899	927	955	983	1011	1039	1067	1095	1123	. 1	3		
92	880	909	937	965	994	1022	1051	1079	1107	1136	. 2	6		
93	890	919	947	976	1005	1033	1062	1091	1119	1148	. 3	9		
94	899	928	957	986	1015	1044	1073	1102	1131	1160	. 4	12		
95	$\begin{array}{r}-909 \\ \hline 919\end{array}$	-938	-968	-997	-1026	-1056	-1085	-1114	-1144	-1173	. 5	15		
96	919	948	978	1007	1037	106\%	1096	1126	1156	1185	. 6	18		
97	928	958	988	1018	1048	1078	1108	1138	1168	1198	. 7	21		
98	938	968	998	1028	1059	1089	1119	1149	1180	1210	. 8	23		
99 100	947	978	1008	1039	1069	1100	1131	1161	1192	1222	$\cdot 9$	26		
				1049	108	111	142	1173	1204	1205				
	31	32	33	34	35	36	37	38	39	40				
	. 1	2	$\cdot 3$	4	. 5	. 6	. 7	. 8	. 9	Corrections for tenths in width.				
	1	2	3	4	5	6	8	9	10					

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

TABLE XI.-Continued.
Volumes by the Prismoidal Formula.

$\begin{aligned} & \text { 年 } \\ & 0 \\ & 0 \end{aligned}$	Heights.										Corrections for tenths in height.			
	41	42	43	44	45	46	47	48	49	50				
51	645	661	677	693	708	724	740	756	771	787	. 1	2		
52	658	674	690	806	722	738	754	770	786	802	. 2	8		
53	671	687	703	720	736	752	768	785	802	818	. 3	5		
54	683	700	717	733	750	767	783	800	817	833	. 4	7		
55	-696	-713	-730	-747	-764	-781	-798	-815	-832	-849	- 5			
56	709	726	743	760	778	795	812	830	847	864	. 6	10		
57	721	739	756	774	792	809	827	844	862	880	.7	12		
58	734	752	770	788	806	823	841	859	877	895	. 8	14		
59	747	765	783	801	819	833	856	874	892	910	.9	15		
60	759	778	796	815	833	852	870	889	907	926				
61	772	791	810	828	847	866	885	994	923	941	. 1	2		
62	\%85	804	823	842	861	880	899	919	938	957	.2	4		
63	797	817	836	856	875	894	914	933	953	972	. 3	6		
64	810	830	849	869	889	909	928	948	968	988	. 4	8		
65	-823	-843	-863	-883	-903	-923	-943	-963	-983	-1003	. 5	10		
66	835	856	876	896	917	937	957	978	998	1019	. 6	12		
67	848	869	889	910	931	951	972	993	1013	1034	. 7	14		
68	860	881	902	923	944	965	986	1007	1028	1049	. 8	16		
69	873	894	916	937	958	980	1001	1022	1044	1065	.9	18		
70	886	907	929	951	972	994	1015	1037	1059	1080				
81	898	920	942	964	986	1008	1030	1052	1074	1096	1	2		
72	911	933	956	978	1000	1022	1044	1067	1089	1111	. 2	3		
73	924	946	969	991	1014	1036	1059	1081	1104	1127	$\cdot 3$	7		
74	936	959	-982	1005	1028	1051	1073	1096	1119	1142	. 4	1		
55	-949	-972	-995	-1019	-1042	-1065	-1088	-1111	-1134	-1157	. 5	12		
76	962	985	1009	1032	1056	1079	1102	1126	1149	1173	. 6	14		
77	974	998	1022	1046	1069	1093	117	1141	1165	1188	. 7	16		
78	987	1011	1035	1059	1083	1107	1131	1156	1180	1204	. 8	19		
79	1000	1024	1048	1073	1097	1122	1146	1170	1195	1219	. 9	21		
80	1012	1037	1062	1086	1111	1136	1160	1185	1210	1235				
81	1025	1050	1075	1100	1125	1150	1175	1200	1225	1250	. 1	8		
82	1038	1063	1088	1114	1139	1164	1190	1215	1240	1265	.2	8		
83	1050	1076	1102	1127	1153	1178	1204	1230	1255	1281	$\cdot 3$	8		
84	1063	1089	1115	1141	1167	1193	1219	1244	1270	1296	. 4	10		
85	-1076	-1102	-1128	-1154	-1181	-1207	-1233	-1259	-1285	-1312		13		
86	1088	1115	1141	1168	1194	1221	1248	1274	1301	1327	. 6	16		
87	1101	1128	1155	1181	1208	1235	1262.	1289	1316	1343	$\cdot 7$	18		
88	1114	1141	1168	1195	1222	1249	127%	1304	1331	1358	. 8	21		
89	1126	1154	1181	1209	1236	1264	1291	1319	1346	1373	. 9	24		
90	1139	1167	1194	1222	1250	1278	1306	1333	1361	1389				
91	1152	1180	1208	1236	1264	1292	1320	1348	1376	1404	. 1	3		
92	1164	1193	1221	1249	1278	1306	1335	1363	1391	1420	. 2	6		
93	1177	1206	1234	1263	1292	1320	1349	1378	1406	1435	$\cdot 3$	9		
94	1190	1219	1248	1277	1306	1335	1364	1393	1422	1451	. 4	12		
95	-1202	-1231	-1261	-1290	-1319	-1349	-1378	-1407	-1437	-1466	. 5	15		
96	1215	1244	1274	1304	1333	1363	1393	1422	1452	1481	. 6	18		
97	1227	1257	1287	1317	1347	1377	1407	1437	1467	1497		21		
98	1240	1270	1301	1331	1361	1391	1422	1452	1482	1512	. 8	23		
99	1253	1283	1314	1344	1375	1406	1436	1467	1497	1528	. 9	26		
100	1265	1296	1327	1358	1389	1420	1451	1481	1512	1543				
	41	42	43	44	45	46	47	48	49	50				
	. 1	2	-3	4	$\cdot 5$. 6	. 7	. 8	-9	Corrections for tenths in width.				
	1	3	4	6	7	8	10	11	13					

The Star and the Azimuth are W. of N. when the hour angle is less
The Argument is the star's hour angle (or 23 h . 56 min .
To Find tee True Meridian the azimuth must be laid off to the east when the

for all Hour Angles. § 381a.
than $11^{\mathrm{h}} 58^{\mathrm{m}}$ and E . of N. when the hour angle is greater than $11^{\mathrm{b}} 58^{\mathrm{m}}$. minus the star's hour angle), for the years given.
hour angle is less than $11^{\mathrm{h}} 58 \mathrm{~m}$, and to the west when it is greater than $11 \mathrm{~h} 58^{\mathrm{m}}$.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENERENCE

[^0]: * This is shown in mechanics, and the student may have to take it for granted temporarily.

[^1]: * For the demonstration of the prismoidal formula see Art. 314.

[^2]: * This figure is taken from a paper describing the method by Prof. William G. Raymond, University of California.

[^3]: * For a demonstration of this formula see Henck's Field-Book.

[^4]: * Tables for Computing the Cubic Contents of Excavations and Embankments. By John R. Hudson, C.E. John Wiley \& Sons, New York, 1884.

[^5]: * The two methods here discussed are the only ones that have any claims to accuracy. The method by "mean end areas," wherein the volume is assumed to be the mean of the end areas into the length, always gives too great a volume (except when a greater centre height is found in connection with a less total width, which seldom occurs), the excess being one sixth of the volume of the pyramids involved in the elementary forms of the prismoid. This is a large error even in level sections, and very much greater on sloping ground, and yet it is the basis of most of the tables used in computing earthwork, and in some States it is legalized by statute. Thus in the example computed by Henck's method on p. 414 the volume by mean end areas is 1193 cu . yards; by the prismoidal formula it is 1168 cu . yards, while by the method by diagonals it was only 1001 cu . yards. This was an extreme case, however, and was selected to show the adaptation of the method by diagonals to such a form.

[^6]: * For a further exposition of this subject, see Appendix C.

[^7]: * See paper by P. J. Flynn in Trans. Tech. Soc. of the Pacific Coast, voL ii. p. 179, where all the available experimental data are given.

[^8]: * For the derivation of this rule see Appendix C.

[^9]: *This table was computed by Mr. Arthur Winslow of the State Geological Survey of Pennsylvania.
 For description of chart for graphical reduction see p. v.

